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Abstract. We study some examples of complex, classical, scalar
fields within the new framework that we introduced in a previous
work. In these particular examples, we replace the usual functional
integral by a complex functional arising from partial Wick rotation
of a quantum field. We generalize the Feynman-Kac relation to
this setting, and use it to establish the spectral condition on a
cylinder. We also consider positive-temperature states.
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I. Introduction

In [21] we introduced a framework for using complex classical fields
to describe neutral, scalar quantum fields. In that work we replace
the real functional integral by a complex functional. In this work we
study in detail one particular family of examples that provide a classical
interpretation for partial Wick rotation of a quantum field.

Complex fields arise naturally when the heat kernel of a Hamiltonian
is complex, as in the case when an interaction breaks time-reversal
symmetry. A simple family of examples arises when one adds a multiple
of the momentum to the Hamiltonian—the case that we study in this
paper.

In the usual situation for scalar bosons, the Euclidean action A =
A(Φ) is real, and the Feynman-Kac density e−A is positive. In the case
that A has some other nice properties, the density e−A can be normal-
ized to define a probability measure. However, when the classical fields
Φ are complex, the action A may also be complex. Consequently, the
problem of integrating e−A is more subtle (see also [12][13]).

The mathematics of complex measures on finite-dimensional spaces
poses no difficulty provided the absolute value of the measure can be
integrated. The situation is more complicated for measures on function
spaces, such as the measures in functional integrals. Not only can the
density grow in certain complex directions, but also oscillations may
lead to other difficulties with normalization. Even the case of Gaussian
measures is not straightforward, so one can imagine more difficulty in
the study of interactions with non-quadratic actions.
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In this paper we consider perturbations of a Hamiltonian H with
zero ground-state energy and with a positive heat kernel. We study
perturbations of the form

H~v = H + ~P · ~v . (I.1)

The momentum ~P commutes with H and generates spatial transla-
tions. As we require that |~v | < 1, the operator H~v is a multiple of
the Hamiltonian in a Lorentz frame boosted by velocity ~v, in units for
which the speed of light c = 1.

We study free fields in arbitrary dimension; in spacetime dimension
two we also treat P(ϕ)2-interactions on the spatial circle. In §V we
introduce a generalized Feynman-Kac relation to deal with the non-
linear interaction in the absence of a measure. We define a functional
on a sufficiently large sub-algebra of functions of the classical fields to
analyze the corresponding quantum fields.

As discussed in [21], the property of reflection positivity plays a key
role in our setting. Further insight arises from having two reflection-
positive planes in the classical framework, for one then has a symmetry
relating two different quantum theories.

In §VI we use this symmetry to give a proof of

0 6 H~v , (I.2)

for P(ϕ)2-interactions on a spatial circle. This spectrum condition was
conjectured in [10] and proved in [15]; see §VI for further discussion.
Without appealing to Lorentz symmetry, the estimate (I.2) results in
analyticity of the imaginary-time field ϕ(t, ~x) in the spatial variable
~x. In particular, the spectrum condition holds when the spacetime
manifold is compact in the spatial directions.

In §VII and §VIII we analyze quantization for positive temperatures.
We hope that the methods we develop here can be useful in a wider
context. We are currently studying a second application to charged
fields.

II. Quantization

We adopt the notations and conventions of our earlier work. We
analyze classical fields on space-times of the general form

X = X1 × · · · ×Xd ,

where each factor Xi either equals R (the real line) or S1 (a circle) of
length `i. The classical Gaussian, neutral, scalar field Φ is an operator-
valued distributions, and all classical fields commute. The classical



4 A. M. JAFFE, C. D. JÄKEL, AND R. E. MARTINEZ II

field acts on the Fock space

E = C⊕
∞⊕
n=1

En , where En = E1 ⊗s · · · ⊗s E1︸ ︷︷ ︸
n factors

, (II.1)

over the Hilbert space E1 = L2(X; dx).

II.1. Quantization of Vectors. Let Φ be a field on E for which a
unitary reflection Θ is doubly reflection-positive. While Θ usually de-
notes time reflection, our quantization method applies to any reflection
satisfying the following list of properties:

i.) Θ−1 = Θ∗ = Θ on E ;
ii.) ΘE± = E∓ , where E± are subspaces of E ; and,
iii.) 0 6 Θ on E± .

The sesquilinear form

(A,B) 7→ 〈A,ΘB〉E
on E+×E+ (or on E−×E−) defines pre-Hilbert spaces H±,0 , which are
the quantizations of E± with respect to the reflection Θ. The vectors
in H±,0 are equivalence classes

Â = A+N ∈ E±/N± ,
where A ∈ E±, and where N ∈ N ∩E± is an element of the null space N
of the form (II.2). The inner products〈

Â, B̂
〉
H±,0

=
〈
A,ΘB

〉
E , A,B ∈ E± , (II.2)

defined initially on H±,0 , extend to inner products on the Hilbert space
H± , the completion of H±,0 . As Θ is unitary, property ii.) in the
list above ensures that the Hilbert spaces H± are isomorphic, so for
simplicity we denote both spaces as H. The quantization map ̂ is a
contraction on vectors, namely

‖Â‖H 6 ‖A‖E .

II.2. Quantization Domains. To simplify notation in this section,
we only consider reflections in the first coordinate. Consider an open
subset O of the product space

X+ = X1,+ ×X2 × · · · ×Xd ,

where X1,+ equals the half-circle S1
+ or the half-line R+ and Xj = S1 or

R, j = 2, . . . , d. Let P(O) denote the algebra of formal2 polynomials
in field operators averaged with C∞-functions supported in O.

2The formal product is replaced by the operator product as the formal expression
is applied to the vacuum vector ΩE

0 .
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Definition II.1. An open set O ⊂X+ is a quantization domain if the

quantization map A 7→ Â takes the linear subspace D(O) = P(O)ΩE
0

onto a subspace D̂(O) that is dense in H.

Remark II.2. The Reeh-Schlieder theorem of Wightman quantum field
theory says that products of Minkowski space fields, smeared with test
functions supported in an arbitrary open bounded spacetime region
and applied to the vacuum vector, form a total set of vectors in H.
One can think of a quantization domain O ⊂X+ as a classical version
of this property.

Proposition II.3 (Non-trivial Quantization Domains [18]). Con-
sider a covariant classical scalar field Φ(f) on E(X) with X1,+ = R+,
which satisfies

Θ Φ(x) Θ = Φ(ϑx)∗ .

Assume that:

i.) The characteristic function S(f) = 〈ΩE
0 , e

iΦ(f)ΩE
0 〉E is invariant

under the action of the spacetime translation group and the time
reflection on the test functions; and,

ii.) There is a constant M <∞ and a Schwartz-space norm ‖·‖α on
time-zero test functions such that the following estimates hold:

0 6 H , ±|~P | 6M(H + 1) ,

and

±ϕ(h) 6M‖h‖α (H + 1) .

Then any open set O ⊂X+ is a quantization domain.

II.3. Quantization of Operators. Consider a linear transformation T
whose domain is a quantization domainD(T ) ⊂ E . If T maps E+∩D(T )

into E+ and T maps N+ into N+, then T has a quantization T̂+ on H+

with domain D(T̂+) = (E+ ∩ D(T ))∧. Explicitly,

T̂+ Â = T̂A for A ∈ D(T ) ∩ E+ .

If in addition, T extends to a densely-defined operator on E with ad-
joint T ∗, let

T+ = ΘT ∗Θ .

Assume that T+ leaves E+ invariant, that is, T+ : E+ ∩ D(T+) → E+.
In this case, a Schwarz inequality in E shows that T maps N+ into N+.

In addition the adjoint of T̂+ on H+ extends T̂+. The latter denotes
the quantizations of T+ on H+. Similarly, one has a quantization T−

of T in case that T maps E− ∩D(T ) into E− and T maps N− into N−.
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II.4. The Heat Kernel Semigroups. In caseX1 = R, let T (t) denote
a unitary translation group on E , implementing translations of the

distinguished time coordinate. Note that T (t)+ = T (t), so T̂ (t) is self-

adjoint. Thus, T̂ (t) gives a self-adjoint quantization of the positive-time
semigroup T (t) on H+ and of the negative time semigroup on H−. In
particular, the generators of these semi-groups are the (positive, self-
adjoint) Osterwalder-Schrader Hamiltonians 0 6 H± = H∗± , and

T̂ (t) =

{
e−tH+ on H+ if 0 6 t ,

etH− on H− if t 6 0 .

We return to the case X1 = S1 in §VII.

III. Classical Gaussian Fields on R
d

We begin by discussing the Euclidean version of the one-particle
space in quantum theory on R

d−1 that corresponds to the free field
theory with Hamiltonian H~v given in (I.1). For the free field the map

H 7→ H±~v = H ± ~P · ~v replaces the one-particle Hamiltonian µ acting
on the one-particle subspace H1 by

µ± = µ± ~p · ~v . (III.1)

Here ~p = −i∇~x and ~v ∈ Rd−1 is a given constant vector of length less
than one. Write

~v = ~n tanh β and δ = ~p · ~v , (III.2)

where ~n ∈ Rd−1 is a unit vector and β ∈ R. Throughout this work, we
assume that m > 0, so |δ| < µ tanh |β|. As 1 − tanh2 β = cosh−2 β =
(1− ~v 2)−1, we infer that µ2/ cosh2 β 6 µ2 − δ2. Thus,

0 < m
√

1− ~v 2 6 µ
√

1− ~v 2 6 µ± . (III.3)

For ~v 6= 0, the two-point function D~v is complex, rather than real and
positive. Nevertheless, the hermitian part of the associated heat kernel
is strictly positive. Furthermore, D~v has two reflection planes (reflec-
tion in the time-axis and in the ~v -axis) that are reflection-positive.
The corresponding configuration space is given by X = R

d. For these
reasons, this example fits into the framework introduced in [21].

For a non-interaction system, we obtain all information from the
Gaussian expectation of classical fields. The expectation of the product
of two fields defines the classical two-point function D~v :

D~v((s1, ~x1), (s2, ~x2)) = 〈ϕ(0, ~x1)Ω0, e
−(s1−s2)(H+~P ·~v)ϕ(0, ~x2)Ω0〉 .
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III.1. The Two-Point Function D~v . Let x = (t, ~x) ∈ R
d and, in

Fourier space, let k = (E,~k) ∈ R
d. The introduction of a covariance

operator D~v on E1 corresponds to the substitution µ 7→ µ+ = µ+ δ on
the one-particle space. To simplify notation, denote the multiplication
operators in Fourier space by

FµF∗ = (~k2 +m2)1/2 and F ~pF∗ = ~k ,

where F denotes Fourier transformation. Therefore, in Fourier space,

FδF∗ = ~k · ~v . Consider the substitution

(2π)d/2C̃(k) =
1

E2 + µ2
7→ 1

(E + iδ)2 + µ2
= (2π)d/2D̃~v(k) . (III.4)

The corresponding operator D~v on L2(Rd; dx) has the integral kernel

D~v(x− x′) =
1

(2π)d

∫
Rd

1

(E + iδ)2 + µ2
eik·(x−x

′) dk . (III.5)

Proposition III.1 (Elementary Properties of D~v). With the above
conventions:

i.) The integral kernel of D~v has the representation

D~v(x− x′) =
1

(2π)(d−1)

∫
Rd−1

e−|t−t
′|µ+(t−t′)δ+i~k(~x−~x′) d

~k

2µ
(III.6)

with δ given in (III.2);
ii.) The decomposition of D~v = K~v + iL~v into hermitian and skew-

hermitian parts on L2(Rd; dx) yields two hermitian operators
K~v and L~v with real-valued and symmetric kernels. If 0 < m,
then 0 < K~v . Thus,

D~v = DT
~v

0 < K~v = K∗~v = KT
~v = K~v

L~v = L∗~v = LT
~v = L~v ; and,

iii.) Let ϑ denote time inversion acting as a unitary on L2(Rd; dx),
and let π~n denote the unitary on L2(Rd; dx) implementing re-
flection in the spatial plane normal to ~n. The operators ϑD~v ,
D~v ϑ, π~nD~v , and D~v π~n are self-adjoint on L2(Rd; dx).

Proof. The first statement is a consequence of the Cauchy Integral
Theorem:

1

2π

∫ ∞
−∞

eiEt

(E + iδ)2 + µ2
dE =

{
e−t(µ−δ)

2µ
if t > 0

et(µ+δ)

2µ
if t < 0

=
e−|t|µ+tδ

2µ
.
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The second statement is a consequence of the properties of D̃~v(k)
in Fourier space. If k 7→ −k, then E 7→ −E, δ 7→ −δ, and µ 7→ µ.

Therefore, D̃~v(−k) = D̃~v(k), and consequently D~v = DT
~v , K~v = KT

~v

and L~v = LT
~v are symmetric, as claimed. Both K~v and L~v act as

multiplication operators by real-valued functions in Fourier space, so
they are hermitian and real. Their explicit form is

(2π)d/2 K̃~v(k) =
E2 + µ2 − δ2

(E2 + (µ− δ)2) (E2 + (µ+ δ)2)
,

and

(2π)d/2 L̃~v(k) =
−2Eδ

(E2 + (µ− δ)2) (E2 + (µ+ δ)2)
. (III.7)

The bound (III.3) shows K̃~v(k) is non-vanishing as long as m 6= 0.
Thus, 0 < K~v , and K~v is invertible. Also,

L̃~v(k)

K̃~v(k)
=

−2Eδ

E2 + µ2 − δ2
. (III.8)

Finally, consider the third statement. Time reflection in Fourier

space leaves µ, δ, and ~k invariant and sends E 7→ −E. Thus, under
time inversion,

D̃~v(k) 7→ D̃~v(k) .

In configuration space this implies that ϑD~vϑ = D∗~v . Hence ϑD~v and
D~vϑ are self-adjoint.

In Fourier space, spatial-reflection π~n acts as follows: it leaves E

invariant, and it sends ~k 7→ π~n~k = ~k− 2(~n ·~k)~n. This is a consequence
of

π~n ~x · ~k = (~x− 2(~x · ~n)~n) · ~k = ~k · ~x− 2(~k · ~n)(~x · ~n)

= ~x · (~k − 2(~k · ~n)~n) .

Under this transformation, µ 7→ µ and δ 7→ −δ. Thus, D̃~v(k) 7→ D̃~v(k),
and in configuration space π~nD~v π~n = D∗~v . Thus, π~nD~v and D~v π~n are
self-adjoint. �

We now provide bounds on the self-adjoint real and imaginary parts
of D~v = K~v + iL~v . Denote the absolute value by |D~v | = (D∗~v D~v)1/2.

Proposition III.2. The operators K~v , L~v , D~v , and C on L2(Rd; dx)
mutually commute and satisfy

K~v 6 |D~v | 6 (cosh β)K~v .
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Moreover,(
1

2 cosh2 β

)
C < K~v < (cosh4 β)C , and sup

k

∣∣∣ L̃~v (k)

K̃~v (k)

∣∣∣ = sinh |β| , (III.9)

as well as,

(2 cosh2 β)−1C < |D~v | < (cosh5 β)C . (III.10)

Proof. The operators K~v , L~v , D~v , and C are all translation-invariant,

so they commute. Furthermore, ‖K~v‖ = (2π)d/2 supk |K̃~v(k)|. Note
that

(E2 + (µ− δ)2)(E2 + (µ+ δ)2) = E4 + 2E2(µ2 + δ2) + (µ2 − δ2)2

< E4 + 4E2µ2 + µ4

< 2(E2 + µ2)2 .

From (III.3) and (III.7) one then infers the lower bound for K~v in
(III.9). To establish the upper bound on K~v , use

E4 + 2E2(µ2 + δ2) + (µ2 − δ2)2 > E4 + 2E2µ2 +
µ4

cosh4 β

>

(
E2 + µ2

cosh2 β

)2

,

which entails

(2π)d/2 K̃~v(k) < cosh4 β
(E2 + µ2 − δ2)

(E2 + µ2)2

6 (2π)d/2 (cosh4 β)C̃(k) .

The upper bound on K~v then follows. We also use the explicit forms
in (III.7) to bound the ratio (III.8). From (III.3) we conclude that∣∣∣∣∣ L̃~v(k)

K̃~v(k)

∣∣∣∣∣ =
2|E~k · ~n| 1

coshβ

E2 + µ2 − δ2
sinh |β|

6
E2 +

~k2

cosh2 β

E2 + µ2 − δ2
sinh |β|

6
E2 +

~k2

cosh2 β

E2 + µ2

cosh2 β

sinh |β| < sinh |β| . (III.11)

In fact, one can approach the bound (III.11) by choosing

~k · ~n = |~k| = −E cosh β > 0 .
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Then

L̃~v(k)

K̃~v(k)
=

2E2 sinh β

2E2 +m2
→ sinh β as E →∞ .

This shows that the upper bound in (III.11) is the best possible, so the
equality in (III.9) holds.

Finally, we bound |D~v | = (K2
~v + L2

~v)1/2. Since K~v and L~v are self-
adjoint and commute, the bound (III.9) yields

K~v 6 |D~v |
= (1 + (L~vK

−1
~v )2)1/2K~v

6 (1 + sinh2 β)1/2K~v

= (cosh β)K~v ,

where 1 denotes the identity operator. �

III.2. Time-Reflection Positivity. Consider the positive-time half-
space X+ = R+ × R

d−1; the negative-time half-space X− is defined
similarly. Let L2,+ = L2(X±; dx) denote the subspace of L2(Rd; dx)
consisting of functions supported in X±.

Proposition III.3. The operators ϑD~v and D~v ϑ have positive expecta-
tions on L2,+. The corresponding Osterwalder-Schrader Hamiltonians
µ+ for ϑD~v and µ− for D~v ϑ are the Hamiltonians µ± defined in (III.1)
acting on H−1/2(Rd−1).

Proof. We establish positivity of ϑD~v on L2,+ directly from the form
of its integral kernel (III.6). The operator ϑD~v is hermitian by Propo-
sition III.5, and its integral kernel on L2,+ × L2,+ is

(ϑD~v)(x, x′) =
e−(t+t′)(µ+δ)

2µ
(~x− ~x′) , (III.12)

which exhibits its positivity and shows that the Osterwalder-Schrader
Hamiltonian is µ+ = µ + δ , acting on the Sobolev space H− 1

2
(Rd−1)

with inner product〈
·, ·
〉
H− 1

2
(Rd−1)

=
〈

1√
2µ
· , 1√

2µ
·
〉
L2(Rd−1;d~x )

. (III.13)

Let f ∈ L2,+ be smooth, and consider ft(~x) = f(t, ~x) to be a family of
functions of ~x ∈ Rd−1. It follows that

〈f, ϑD~vg〉L2(Rd) =
〈∫ ∞

0

e−tµ+ft dt ,

∫ ∞
0

e−tµ+gt dt
〉
H− 1

2
(Rd−1)

.
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The expression (III.6) shows that the integral kernel of D~v ϑ is

(D~v ϑ)(x, x′) =
e−(t+t′)(µ−δ)

2µ
(~x− ~x′) ,

which exhibits reflection positivity and shows that the Osterwalder-
Schrader Hamiltonian for the operator D~v ϑ is µ− = µ − δ. In this
case,

〈f,D~v ϑ g〉L2(Rd) =

〈∫ ∞
0

e−tµ−ft dt ,

∫ ∞
0

e−tµ−gt dt

〉
H− 1

2
(Rd−1)

.

�

Proposition III.4. Let K+,0 ⊂ K+ be the dense subset defined as the
linear span of C∞0 (S1

+) × C∞0 (Rd−1). Define the Osterwalder-Schrader
quantization maps ∧± : K+,0 → H− 1

2
(Rd−1),

f̂ ± =

∫ ∞
0

e−tµ±ft dt . (III.14)

Then, it follows that

〈f, ϑD~vg〉L2(Rd) =
〈
f̂ +, ĝ +

〉
H− 1

2

(III.15)

〈f,D~v ϑ g〉L2(Rd) =
〈
f̂ −, ĝ −

〉
H− 1

2

. (III.16)

III.3. The Classical Gaussian Field. The neutral field Φ(x) acts
on E as a sesquilinear form defined as a linear function of commuting
coordinates

Q̃(k) = Q̃(−k)∗ .

The latter operators are linear functions of the creation and annihila-
tion operators on E ; see §II of [21]. We set

Φ(x) = (2π)−d/2
∫
Q̃(k) σ̃(k) eik·x dk , (III.17)

and note that

Φ(x)∗ = (2π)−d/2
∫
Q̃(k) σ̃(−k) eik·x dk .

The expectations of products of such fields in ΩE
0 obey a Gaussian

recursion relation,

Sn(f) = (n− 1)S2(f)Sn−2(f),

where Sn(f) = 〈ΩE
0 ,Φ(f)nΩE

0 〉. Permutation symmetry ensures that
〈ΩE

0 ,Φ(f1) · · ·Φ(fn)ΩE
0 〉 is fixed uniquely through polarization. The
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expectation of the product of two fields equals the propagator D~v ,
with integral kernel

〈ΩE
0 ,Φ(x) Φ(x′)ΩE

0 〉 = D~v(x− x′)

= (2π)−d
∫
σ̃(k) σ̃(−k) eik(x−x′) dk

= (σσT)(x, x′) .

Furthermore, the estimate (III.10) shows that Φ(f)ΩE
0 satisfies the

bound

‖Φ(f)ΩE
0 ‖2 = 〈ΩE

0 ,Φ(f)∗Φ(f)ΩE
0 〉

= 〈f, σσTf〉
= ‖σTf‖2

L2

= ‖|D~v |1/2f‖2
L2

6 (cosh5 β) ‖C1/2f‖2
L2
.

While D~v does not determine σ~v uniquely, an elementary solution is
to define σ~v as a square root of D~v . Proposition III.1 shows that D~v

has a positive real part, so we can define its square root as also hav-
ing a positive real part. In Fourier space, this square root depends
continuously on k. Write

σ~v = D
1/2
~v (III.18)

or, in Fourier space,

σ̃~v(k) = (2π)d/4 D̃~v(k)1/2 . (III.19)

In configuration space, one has for this example,

σ~v =
(
(−i ∂

∂t
+∇~x · ~v)2 −∇2

~x +m2
)−1/2

=
(
−∆ +m2 + (∇~x · ~v)2 − 2i ∂

∂t
(∇~x · ~v)

)−1/2
.

Correspondingly, the formula for D~v in configuration space is

D~v =
(
−∆ +m2 + (∇~x · ~v)2 − 2i ∂

∂t
(∇~x · ~v)

)−1
. (III.20)

Proposition III.5 (Properties of the Classical Field). Let D~v

have the form presented in (III.5), and let the operator σ~v be given by
(III.19). Then

σ~v = σT
~v , ϑ σT

~v ϑ = σ∗~v and π~v σ
T
~v π~v = σ∗~v . (III.21)

Also,

ϑD~vϑ = D∗~v . (III.22)
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The field Φ transforms under time and spatial reflections as

Θ Φ(x) Θ = Φ(ϑx)∗ and Π~n Φ(x) Π~n = Φ(π~nx)∗ . (III.23)

The field Φ(x) is hermitian if and only if ~v = 0.

Proof. The operator D~v = DT
~v is symmetric; thus, in Fourier space

D̃~v(−k) = D̃~v(k). The square root σ̃~v(k) has a positive real part and is
continuous in k, so it satisfies σ̃~v(−k) = σ̃~v(k). Hence, the operator σ~v
is also symmetric. The field Φ(x) is hermitian if σ̃(k) = σ̃(−k), namely
if the operator σ is real. Therefore, the field Φ(x) is hermitian on E
only in the case that ~v = 0.

In Proposition III.1, we showed that ϑD~v is self-adjoint, so

σ̃~v(ϑk)2 = σ̃~v(k)
2
.

As (2π)d/2D̃~v(k) = σ̃~v(k)2 has a positive real part, its square root with

positive real part also satisfies σ̃~v(ϑk) = σ̃~v(k). The Fourier transform
of this relation is equivalent to the second identity in (III.21). The
proof of the third identity is similar. The relation (III.22) follows from
(III.21) and D~v = σ2

~v . We have shown the equivalence of the transfor-
mation properties (III.23) and (III.21) for fields of the form (III.17) in
Propositions II.1 and II.5 of [21]. �

III.4. The Gaussian Quantum Field. The time-zero quantum field
results from the quantization

ϕ(~x) = Φ̂(0, ~x)

of the time-zero classical field and acts on the Fock space

H = C⊕
∞⊕
n=1

Hn , where Hn = H1 ⊗s · · · ⊗s H1︸ ︷︷ ︸
n factors

,

with H1 = H−1/2(Rd−1). Recall that H− 1
2
(Rd−1) is the Sobolev space

defined in (III.13), which is just the usual one-particle space for the real,
free scalar field. The Gaussian nature of the Fock space E , together
with the fact that Φ(f) maps E+ into E+ , implies that

ϕ(h) = Φ̂(0, h) = Φ̂(f) , f = δ ⊗ h .
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For a real test-function h, the reflection property determined by Propo-
sition III.5 yields

‖ϕ(h)nΩ0‖2
H = 〈Φ(f)nΩE

0 ,ΘΩE
0 〉E

= 〈ΩE
0 , (ΘΦ(f)∗Θ)nΦ(f)nΩE

0 〉E
= 〈ΩE

0 ,Φ(f)2nΩE
0 〉E

= (2n− 1)!!〈h, h〉nH− 1
2

(Rd−1) .

Expressed in terms of the creation operators for the free field a∗(~x) one
has that, for the Fock-space zero-particle vector Ω0,

‖ϕ(h)Ω0‖2
H = 〈h, h〉H− 1

2
(Rd−1)

= ‖a∗(h)Ω0‖2
H

= ‖a∗((2µ)−1/2h)Ω0‖2
L2(Rd−1) .

This shows that the time-zero field has the same expectations as the
time-zero free field. Furthermore, the time-zero quantum fields gener-
ate an abelian algebra.

The expectations of products of classical fields on E satisfy Gaussian
recursion relations, so their quantizations also satisfy Gaussian recur-
sion relations. The expectations 〈Ω0, ϕ(h1) · · ·ϕ(hn)Ω0〉 can be ob-
tained from the expectations of 〈Ω0, ϕ(h)nΩ0〉 by polarization. In this
case,

‖ϕ(h)Ω0‖2 = 〈h1, h1〉H− 1
2

+ 〈h2, h2〉H− 1
2

= 〈h, h〉H− 1
2

,

as the scalar product in H− 1
2

is hermitian. Thus, the time-zero field

on H is hermitian and has the form

ϕ(~x) = (2π)−(d−1)/2

∫ (
a(~k)∗ + a(−~k)

)
e−i

~k·~x d~k .

The Hamiltonian H± = Hfree ± ~P · ~v acts on the n-particle subspace
as a direct sum of the 1-particle Hamiltonians µ± = µ± δ. Recall that

Hfree and ~P are the free-field Hamiltonian and momentum operator on
H. Setting

ϕ±(t, ~x) = eitH±ϕ(~x)e−itH± ,

we obtain Wightman functions

W(n)
(
Λ−1
± (t1,~0) + (0, ~x1), . . . ,Λ−1

± (tn,~0) + (0, ~xn)
)

= 〈Ω0, ϕ±(t1, ~x1) · · ·ϕ±(tn, ~xn)Ω0〉 ,

where the Lorentz transformation Λ± gives the boost by velocity ±~v.
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III.5. Spatial Reflection Positivity. In order to establish spatial
reflection positivity, we proceed as in Section III.2 but evaluate the

Fourier transform in a spatial direction. Let k = (E,~k) ∈ R
d and

let ~k⊥ ∈ R
d−2 denote the component of ~k ∈ R

d−1 in the subspace of

dimension d − 2 orthogonal to the vector ~n. Also, let ν = ν(~n,E,~k⊥)
be the positive square root

ν =
(
E2 +

~k⊥ 2+m2

cosh2 β

)1/2

> (E2 + m2

cosh2 β
)1/2 > |E| .

In particular, ν ± E tanh β > 0. Define the one-particle Sobolev

space H̃− 1
2
(Rd−1) as the Hilbert space of functions with coordinates

(E,~k⊥) ∈ Rd−1 and with inner product〈
·, ·
〉
H̃− 1

2
(Rd−1)

=
〈

1√
2ν
·, 1√

2ν
·
〉
L2(Rd−1;dE d~k⊥)

. (III.24)

Let ν also denote the corresponding pseudo-differential operator acting
in configuration space,

ν =
(
− ∂2

∂t2
+
−∇2

~x+(~n·∇~x)2+m2

cosh2 β

)1/2

.

Finally, let U(s) denote translation in the coordinate direction.

Proposition III.6. The operators π~nD~v and D~v π~n have both posi-

tive expectations on L2(X~n+; dE d~k⊥). The corresponding Osterwalder-
Schrader Hamiltonians ν+ and ν− (for π~nD~v and for D~v π~n) both act

on the Sobolev space of functions H̃− 1
2
(Rd−1) defined in (III.24). In

momentum space, the explicit forms of the Hamiltonians are

ν± = (cosh2 β)(ν ± E tanh β) . (III.25)

Remark III.7. In case d = 2, one has ~k⊥ = 0, so ν is only a function of
the energy, m and β. In this case,

ν =
(
E2 + m2

cosh2 β

)1/2

,

and

ν± = cosh2 β

((
E2 + m2

cosh2 β

)1/2

± E tanh β

)
. (III.26)

This has a similar form to µ± of (III.1), but with an overall multiple
of cosh2 β and with a mass modified by the factor (cosh β)−1. Hence,
in configuration space,

ν =
(
− ∂2

∂t2
+ m2

cosh2 β

)1/2

,
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and

F∗ ν±F = cosh2 β
(

(− ∂2

∂t2
+ m2

cosh2 β
)1/2 ± i ∂

∂t
tanh β

)
.

For d > 2, one must also scale the remaining spatial variables by cosh β.

Proof. Under rotations, the operator D~v transforms by the rotation
of ~n, so it is no loss of generality to assume that ~n points in the direction
of the coordinate x1. In Fourier space δ = k1 tanh β. Write the inverse

of (2π)d/2D̃~v(k) as

(E + iδ)2 + µ2 = 1
cosh2 β

(
k2

1 + (iE sinh 2β)k1

+
(
E2 + ~k⊥ 2 +m2

)
cosh2 β

)
= 1

cosh2 β
(k1 − ik+)(k1 − ik−) ,

where the roots 0 < k+,−k− are given by

k± = (±ν − E tanh β) cosh2 β .

With this information, one can evaluate the integral

(2π)−1

∫ ∞
−∞

eik1ξ

(E + iδ)2 + µ2
dk1 =

cosh2 β

k+ − k−

{
e−k+ξ

e−k−ξ

=
cosh β

2ν

{
e−k+ξ , if ξ > 0

e−k−ξ , if ξ < 0 .

Replace ξ by x1−x′1 and apply the reflection π~n. Infer that the integral
kernel (π~nD~v)(x, x′) of π~nD~v , acting on functions in L2(Rd~n+; dx), is

(π~nD~v)(x, x′) =

(
ek−(x1+x′1)

2ν

)
(t− t′, x2 − x′2, . . . , xd − x′d) .

Thus, conclude that spatial reflection positivity holds for π~nD~v , and
that its one-particle Osterwalder-Schrader Hamiltonian is

ν+ = −k− = (ν + E tanh β) cosh2 β ,

which acts naturally on the one-particle Hilbert space H̃− 1
2

defined in

(III.24).
Repeating the same argument for D~v π~n , find that

(D~v π~n)(x, x′) =

(
e−k+(x1+x′1)

2ν

)
(t− t′, x2 − x′2, . . . , xd − x′d) .

This shows that reflection positivity holds for D~v π~n , and that its
Osterwalder-Schrader Hamiltonian is

ν− = k+ = (ν − E tanh β) cosh2 β ,
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which acts on the same one-particle space H̃− 1
2

as ν+. �

III.6. Quantization of Spatial Reflection Positivity. We use co-
ordinates such that x = (t, x⊥~n , x~n) ∈ Rd to introduce the x~n = 0 quan-
tum field ϕ̃(t) as the quantization of Φ(t, x⊥, 0) with respect to the

inner product determined by the matrix elements of Π~n on Ẽ+ ≡ E~n+,
namely,

ϕ̃(t, x⊥) = ˜Φ(t, x⊥, 0).

The quantum field ϕ̃(t) acts on the Fock space

H̃ = C⊕
∞⊕
n=1

H̃n , where H̃n = H̃1 ⊗s · · · ⊗s H̃1︸ ︷︷ ︸
n factors

,

where H̃1 = H̃− 1
2

is the spatial one-particle Sobolev space defined

in (III.24). The scalar 1 ∈ C is the standard zero-particle state Ω̃0

in H̃. Note that Π maps Ẽ+ to Ẽ−, and also π~n(g ⊗ δ) = g ⊗ δ. Thus,
for f = g ⊗ δ real-valued,

ϕ̃(g) =

∫
ϕ̃(t, x⊥)g(t, x⊥) dt dx⊥ = Φ̃(f)

and

‖ϕ̃(g)nΩ̃0‖2
H = 〈Φ(f)nΩE

0 ,ΠΦ(f)nΩE
0 〉E

= 〈ΩE
0 , (ΠΦ(f)∗Π)nΦ(f)nΩE

0 〉E
= 〈ΩE

0 ,Φ(f)2nΩE
0 〉E

= (2n− 1)!!〈g, g〉n
H̃− 1

2

.

As in §III.1 of [21], we infer that the field ϕ̃ can be expressed in terms
of creation operators ã∗ and (their adjoint) annihilation operators ã,
using the function ν(E) defined in (III.26). Specializing to the two-
dimensional case, we have

ϕ̃(t) = (2π)−1/2

∫
dE√
2ν(E)

(
ã(E)∗ + ã(−E)

)
e−iEt .

IV. Classical Fields on the Cylinder X = R× Td−1

In this section we study periodization of the spatial directions. We
are especially interested in the spacetime X = R × T

d−1 with T
d−1 =

S1 × · · · × S1 denoting the d − 1 dimensional torus. Let Λ =
∏d−1

j=1 `j
denote the spatial volume, where `j is the circumference of the jth

constituent circle.
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Define the quantum-mechanical Fock space

HΛ = C⊕
∞⊕
n=1

Hn , where Hn = H1 ⊗s · · · ⊗s H1︸ ︷︷ ︸
n factors

, (IV.1)

with H1 = L2(Λ; d~x ). As in previous sections, the scalar 1 ∈ C denotes
the zero-particle vector Ω0.

The positive Hamiltonians H±(Λ) arise as the quantization of the
one-particle Hamiltonian µ± given in (III.1). The form of the one-

particle Hamiltonian µ±(~k) on the compactified spatial torus Λ is the
same as that on Fourier space Rd−1. For the model on the torus Td−1,

however, the momenta ~k lie in the lattice KΛ =
⊕d−1

j=1
2π
`j
Z dual to Td−1.

The time-zero field

ϕ(α) =

∫
ϕ(~x)α(~x) d~x , α ∈ H− 1

2
(Td−1) .

acting on HΛ has domain D(H±(Λ))1/2 ⊂ D(Hfree(Λ))1/2. Thus, the
imaginary-time field

ϕ±I (t, α) = e−tH± ϕ(α) etH± ,

has the dense domain e−(t+ε)H±HΛ for any ε > 0. As a form on
C∞(H±)× C∞(H±),

ϕ±I (t, ~x) =
1√
Λ

∑
k∈KΛ

1√
2µ(~k)

(
a(~k)∗e−tµ∓(~k) + a(−~k)etµ±(~k)

)
e−i

~k·~x .

Introducing the anti-time-ordering operator A for products of imaginary-
time fields where, for example,

Aϕ±I (x)ϕ±I (x′) = θ(t′ − t)ϕ±I (x)ϕ±I (x′) + θ(t− t′)ϕ±I (x′)ϕ±I (x) ,

the two-point function D~v ,Λ can be expressed as

D~v ,Λ(x− x′) = 〈Ω0 Aϕ
±
I (x)ϕ±I (x′)Ω0〉HΛ

.

We present similar formulas for the completely compactified case in a
later section.

Remark IV.1. The free Hamiltonian H±(Λ) on the spacetime R× Λ is
positive and has a trace-class heat kernel, which allows us to define the



COMPLEX CLASSICAL FIELDS AND PARTIAL WICK ROTATIONS 19

partition function

Z±,β,Λ = Tr e−βH±(Λ)

=
∏
~k∈KΛ

1

1− e−βµ±(~k)

=
∏
~k∈KΛ

(
1 + ρ±(~k)

)
.

The corresponding Gibbs states are

〈 · 〉±,β,Λ =
Tr( · e−βH±(Λ))

Z±,β,Λ
.

Cyclicity of the trace shows that 〈 · 〉β,±,Λ is invariant under the adjoint
action of the unitary group eitH±(Λ). Furthermore, ‖〈 · 〉β,±,Λ‖ = 1.

Positivity of the Hamiltonian H± implies that the functions

F±A,B(t) = 〈AeitH±B〉±,β,Λ , A,B ∈ B(HΛ) ,

extend to analytic functions in the strip z = t + is with 0 < s < β.
Using the Hölder inequality for Schatten norms, one concludes that
the function F±(z) is bounded uniformly inside the strip by |F±(z)| 6
‖A‖ ‖B‖. Moreover, F±A,B(t) satisfies the KMS property

F±A,B(t+ iβ) = 〈Be−itH±A〉±,β,Λ .
This property characterizes thermal states [24][25][14].

V. A Feynman-Kac Formula for P(ϕ)2 Models

In this section we establish a formula relating expectations of func-
tions of complex fields to certain matrix elements of the heat kernel
e−tHv . We call this a generalized Feynman-Kac formula, as the classi-
cal side of the identity is a sesquilinear form that is not densely defined.
However, this classical form suffices to obtain a quantization which is
the densely-defined heat kernel of the quantum-mechanical Hamilton-
ian. We use this generalized Feynman-Kac formula to establish useful
bounds on the quantum-mechanical matrix elements.

In most usual cases one defines the classical side of the Feynman-Kac
identity as matrix elements of a densely-defined form that determines
an operator on a Hilbert space over path space. On our examples
with interaction, the action functional A(Φ) is a normal operator on
the space E of classical fields. However, we do not have complete
information about the domain of Θe−A, where Θ denotes the unitary
time reflection on classical fields. We anticipate that this framework
could be helpful in other contexts.
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V.1. Background. Consider a spacetime cylinder with the time co-
ordinate t ∈ R and spatial coordinate x ∈ S1 parameterized by x ∈
[− `

2
, `

2
] for ` > 0. The P(ϕ)2-Hamiltonian is

H = Hfree +Hint − E , where Hint =

∫ `/2

−`/2
dx :P(ϕ(x)): , (V.1)

where the polynomial P is bounded from below, and : · : denotes nor-
mal ordering with respect to the Fock space vacuum. The constant E
equals the infimum of the spectrum of Hfree +Hint, and E 6 0. Define

Hv = H + P v , (V.2)

where v = tanh β. Note that H0 refers to the case v = 0, and not to
the free Hamiltonian that we denote Hfree.

Glimm and Jaffe showed in [9] that H with a spatial cutoff, rather
than on a spatial circle, i.e., with periodic boundary conditions, has a
ground state Ω that is unique up to a phase. A similar proof applies to
H with periodic boundary conditions. Since the Hamiltonian H and
the momentum P commute, they can be simultaneously diagonalized.
Both Hfree and P have purely discrete spectra and compact resolvents.
Following Heifets and Osipov, we have:

Proposition V.1. The Hamiltonian Hv has pure discrete spectrum,
and the heat kernel e−tHv is trace class on H for t > 0.

Proof. Glimm and Jaffe [9] proved that given any ε > 0, there exists
Mε <∞ such that εHfree +Hint +Mε > 0. Moreover,

|v |Hfree > ±P v .

Choose ε > 0, so 1−2ε > |v |. Hence, (1−2ε)Hfree +P v > 0. It follows
that

Hv = ((1− 2ε)Hfree + P v) + (εHfree +Hint +Mε) + εHfree − E −Mε

> εHfree − E −Mε .

In other words, εHfree 6 Hv + Mε + E and Hv is relatively compact
with respect to Hfree. Since H0 has pure discrete spectrum, so does Hv .
As the heat kernel e−tHfree on the Hilbert space H is trace class for all
t > 0, it follows that the heat kernel e−tHv is trace class on the Hilbert
space H for all t > 0. �

V.2. Operators, Forms, and the Feynman-Kac Formula. In this
section we investigate a Feynman-Kac formula for the matrix elements

〈Ω̂, e−THv Ω̂′〉H = 〈Ω,Θe−A T (T )Ω′〉E , T ∈ R+ , (V.3)
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of the heat kernel e−THv , representing them as classical expectations of
the time-reflection Θ times the exponential e−A of an action A for a time
interval of length T (corresponding to t ∈ [−T

2
, T

2
]), combined with the

free unitary time-translation t 7→ T (t) on E . Up to an additive constant
M , the action A for the non-linear perturbation of the Hamiltonian is
the integral3 of a density :P(Φ(t, ~x)):, namely,

A =

∫ T/2

−T/2
dt

∫ `/2

−`/2
dx :P(Φ(t, x)): + `MT .

The value of the constant M is unimportant for our argument, except
for the fact that it is finite, and it provides a normalizing factor that
appears in all expectations. The function A, as well as its adjoint, are
operators on E with the dense domain D ⊂ E consisting of polynomials
in Φ(f) applied to ΩE

0 , where f ∈ C∞0 . Write A = C+ iD, where C and
D are symmetric. Likewise, A∗ = C− iD. Similarly, the operators

A+ =

∫ T/2

0

dt

∫ `/2

−`/2
dx :P(Φ(t, x)): + 1

2
`MT

A− =

∫ 0

−T/2
dt

∫ `/2

−`/2
dx :P(Φ(t, x)): + 1

2
`MT

Ã+ =

∫ T/2

−T/2
dt

∫ `/2

0

dx :P(Φ(t, x)): + 1
2
`MT

Ã− =

∫ T/2

−T/2
dt

∫ 0

−`/2
dx :P(Φ(t, x)): + 1

2
`MT ,

as well as their real and imaginary parts C±,D±, C̃±, and D̃±, respec-
tively, are all densely-defined, commuting operators on the domain D.

Proposition V.2. The operators A, A±, and Ã±, as well as their
adjoints, have normal, mutually commuting closures. We also denote
them by A, etc. The polar decomposition of the exponential of −A is

e−A = e−Ce−iD. Similarly, e−A± = e−C±e−iD± and e−Ã± = e−C̃±e−iD̃±.
Furthermore, ΘA± = A∗∓Θ and Θe−A± = e−A

∗
∓Θ, so

Θe−A = e−A
∗
+Θe−A+ .

Proof. The fact that all these operators are defined on the domain D
is a standard estimate relying on the fact that the covariance Dv is
bounded from above by the covariance C; see §III.1. The proof of the

3In the case of a two-dimensional, cylindrical spacetime X = R×S1, we use the
notation (t, x) for a point in time and space, dropping the vector on the spatial
component ~x.
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normality and commutativity of the closures is similar to the proof of
Proposition 2.1.2 in [8]. The Fock zero-particle state ΩE

0 is cyclic for
the maximally-abelian von Neumann algebra generated by bounded
functions of the fields Φ(f). This algebra commutes with the symmetric
operators A,C,D, etc. It follows that C and D are essentially self-
adjoint, their closures commute, and A is normal. As a consequence
of the definition of the fields, the relation ΘA± = A∗∓Θ is true on
the domain D. It extends to the closures by continuity, and hence to
the exponentials defined by the functional calculus. Similar arguments
apply to the other operators. �

While the vectors AT/2ΩE
0 , with AT/2(Φ) = A(ΦT/2) and ΦT/2(t, x) =

Φ(t+ T
2
, x), may not be in the operator domain of e−A, we require that

they be in the domain of Θe−A or of Πe−A as sesquilinear forms. The
Feynman-Kac formula and the Schwarz inequalities we use involve such
matrix elements. It is for this reason that we use the adjective extended
for the Feynman-Kac formula.

Theorem V.3 (Feynman-Kac Density). The form domain of the op-
erators Θe−A and Πe−A includes D0 × D0 ⊂ E × E, where D0 =
{Φ(fT/2)nΩE

0 } with f ∈ C∞0 supported in the time-interval [0, 1]× [0, `
2
].

For Ω,Ω′ ∈ D0, the Feynman-Kac formula (V.3) holds. Moreover, one
has the Schwarz inequalities

〈Ω,Πe−AΩ′〉E 6 〈Ω,Πe−AΩ〉1/2E 〈Ω
′,Πe−AΩ′〉1/2E , (V.4)

and

〈Ω,Θe−AΩ′〉E 6 〈Ω,Θe−AΩ〉1/2E 〈Ω
′,Θe−AΩ′〉1/2E . (V.5)

Lemma V.4. Let A,B,A+ B be essentially self-adjoint operators on
a Hilbert space H, each bounded from above. Let C be self-adjoint and
commuting with the closures of A,B, and A+B. Then

‖CeA+B‖ 6 ‖eA‖ ‖CeB‖ . (V.6)

Proof. First, consider the case that C = 1. As A and B are bounded
from above, the operators eA, eB, and eA+B are each bounded, too.
Moreover, essential self-adjointness assures that Chernoff’s version of
the Trotter product formula applies; see the Corollary to the Theorem
in [6]. Therefore,

eA+B = st. lim
n→∞

(
eA/n eB/n

)n
.
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Consequently,

‖eA+B‖ =
∥∥st. lim

n→∞

(
eA/n eB/n

)n∥∥
6 lim

n→∞
‖eA/n‖n ‖eB/n‖n .

If MA denotes the upper bound of the spectrum of A, then the spectral
theorem implies ‖eA/n‖ = eMA/n, and similarly for B. The bound (V.6)
for C = 1 now follows.

Consider the case that C 6= 1. Unless CeB is bounded, there is
nothing to prove. As ‖T‖ = ‖TT ∗‖1/2, one infers

‖CeA+B‖ = ‖Ce2A+2BC‖1/2 = ‖C2e2A+2B‖1/2 .

As in the proof with C = 1, one has on the domain D × D with D
equal to the domain of C2, and

C2 e2A+2B = C2 st. lim
n→∞

(
e2A/n e2B/n

)n
= w. lim

n→∞

(
e2A/nC2/ne2B/n

)n
.

Thus,

‖CeA+B‖ 6 lim
n→∞

‖e2A/n‖n/2 ‖C2/ne2B/n‖n/2 .

As above, ‖e2A/n‖ = e2MA/n = ‖eA‖2/n. As B and C2 commute,
they can be simultaneously diagonalized, so ‖C2/ne2B/n‖ = ‖CeB‖2/n.
Hence, the general case of (V.6) also holds. �

Let Hv be given by (V.2).

Lemma V.5. The heat kernel e−tHv is the boundary value of an ana-
lytic function of v in the disk |v | < 1.

Proof. Choose a maximum value of |v | = Γ < 1, and choose 0 < ε <
1− Γ. Note that

dn

dvn
e−tHv

∣∣∣∣
v=0

= (−tP )ne−tH0 .

Let A = −t(εHfree + HI − E), B = −t(1− ε)Hfree, and C = (−tvP )n.
The operators A, B, and A + B = −tH are essentially-self adjoint on
C∞(Hfree); see [26]. For given t,Γ they are bounded from above, and
also P commutes with A,B and their closures. Moreover,

|v |n

n!

∥∥∥∥ dn

dv ′n
e−tHv′

∣∣∣∣
v ′=0

∥∥∥∥ =
1

n!

∥∥(tvP )ne−tH0
∥∥

=
1

n!

∥∥Ce(A+B)
∥∥ .



24 A. M. JAFFE, C. D. JÄKEL, AND R. E. MARTINEZ II

Thus, we can apply Lemma V.4 to obtain

|v |n

n!

∥∥∥∥ dn

dv ′n
e−tHv′

∣∣∣∣
v ′=0

∥∥∥∥ 6 1

n!

∥∥eA
∥∥ ∥∥CeB

∥∥ .

Since |v | 6 Γ and |P |n 6 Hn
free, we infer

‖C eB‖ = ‖(tvP )n e−t(1−ε)Hfree‖

6

(
|v |

1− ε

)n
n!

6

(
Γ

1− ε

)n
n! .

Combining these bounds,

|v |n

n!

∥∥∥∥ dn

dv ′n
e−tHv′

∣∣∣∣
v ′=0

∥∥∥∥ 6 1

n!
‖eA‖ ‖C eB‖

6

(
Γ

1− ε

)n
‖eA‖ .

As Γ < 1− ε, and eA is bounded, the Taylor series

e−tHv =
∞∑
n=0

vn

n!

(
dn

dv ′n

)
e−tHv′

∣∣∣∣∣
v ′=0

(V.7)

is norm-convergent in the disk |v | 6 Γ. But Γ < 1 is arbitrary, so the
heat kernel is analytic in v throughout the open unit disk. �

Proof of Theorem V.3. We only consider Θe−A, as the argument
for Πe−A is similar. In the case that v = 0, the proposition holds as a
consequence of the standard Feynman-Kac formula. The bound is just
the Schwarz inequality in the reflection-positive inner product defined
by one or the other Osterwalder-Schrader quantization. From Lemma
V.5, we infer that

v 7→ 〈Ω,Θe−AΩ′〉E =
〈
Ω̂, e−THv Ω̂′

〉
H

is the boundary value of an analytic function of v in the unit disk. We
can identify this function for v purely imaginary and small in magni-
tude as a matrix element expectation of the heat kernel e−TH0 in the

vector Ω̂ and a translate of the vector Ω̂′. Once the expectation is de-
fined for real v , the Schwarz inequality follows from the positivity of
the reflection-positive inner product. �
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VI. The Spectrum Condition on the Cylinder

In this section we consider quantum fields on the two-dimensional,
cylindrical spacetime R × S1. We take t ∈ R as the time coordinate,
parameterized by the real line, and x ∈ [− `

2
, `

2
] as the spatial coordi-

nate, parametrized by the circle. We consider the P(ϕ)2-Hamiltonian
H given in (V.1) and the Hamiltonian Hv = H + P v defined in (V.2).

Fourier analysis shows that the spectrum condition 0 6 Hv holds for
free fields. Glimm and Jaffe conjectured that the spectrum condition
also holds for Hamiltonians defined on the spatial circle [10]. Heifets
and Osipov later proved this both for P(ϕ)2 models [15] and for the
Yukawa2 model [16]. While Glimm and Jaffe believed to have a proof
of the spectrum condition in [10], they had not established uniqueness
of the ground state Ωv for Hv; see the footnote on p. 1584 of [11]. Our
construction with complex classical fields [21] provides a context for
the Heifets-Osipov argument showing that Ωv is unique.

A consequence of this spectrum condition for theories on a spatial
circle is analyticity of the Schwinger functions in the spatial directions
for |xi − xi+1| < |ti − ti+1|.

Proposition VI.1 (Spectrum Condition on a Cylinder). For real
v , with |v | < 1, one has 0 6 Hv . Any ground state Ωv of Hv is a
multiple of Ω, and HvΩ = PΩ = 0.

Proof. The proof of the spectrum condition 0 6 Hv has two distinct
parts. The first part is to reduce the proof to the bound

〈Ψ, e−THv Ψ〉H 6 〈Ω0, e
−THv Ω0〉1/2H 〈Ψ′, e−THv Ψ′〉1/2H (VI.1)

for a dense set of vectors {Ψ}, with Ψ′ = Ψ′(Ψ), and with Ω0 denoting
the Fock zero-particle vector. The second part is to prove (VI.1).

First Part: We give a variation of the argument in Heifets and Os-
ipov [15]. As recalled in the beginning of §V, the Hamiltonian H has a
unique ground state Ω, up to a phase, and Hv has a negative ground-
state energy Ev . Assume (VI.1). Then

〈Ψ, e−T (Hv−Ev )Ψ〉H 6 〈Ω0, e
−T (H−Ev )Ω0〉1/2H 〈Ψ′, e−T (Hv−Ev )Ψ′〉1/2H

6 eTEv/2 ‖Ψ′‖ , (VI.2)

where we have used PΩ0 = 0 to bound the first expectation and 0 6
Hv − Ev to bound the second one. Thus, for a dense set of vectors
{Ψ}, the expectation of e−T (Hv−Ev ) decays with the exponential rate
e−T |Ev |/2 as T →∞. Hence, 1

2
|Ev | 6 Hv − Ev . However, Hv − Ev has

a zero energy ground state, so it follows that Ev = 0.
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Now consider whether the ground state vector is unique. Denote one
ground state vector of Hv by Ω, and let Ω′ be a second ground state.
For each value of v and for 0 < ε < 1− tanh |v |, one has v± for which
tanh v± = tanh v ± ε. Hence, 0 6 Hv+Hv− , that is,

ε2P 2 6 H2
v . (VI.3)

Taking the expectation of (VI.3) in the vector Ω′ shows PΩ′ = 0.
It follows that Ω′ is also a ground state of H, whose ground state is
unique. Thus, Ω′ = αΩ, where α is a phase.

Second Part: Let A(ϕ) denote a polynomial function of the imaginary-
time field, with each field averaged with a C∞0 -function supported in
the rectangle (t, x) ∈ [0, ε]× [0, `

2
]. Then Ψ = A(ϕ)Ω0 = (A(Φ)ΩE

0 )∧ is
the quantization from temporal-reflection positivity. Note that Theo-
rem II.3 ensures that the states Ψ are dense in H. The vector e−THv/2Ψ
is the quantization of e−A+AT/2ΩE

0 . The Feynman-Kac formula based
on temporal-reflection positivity, elaborated in §V.2, is

〈Ψ, e−THv Ψ〉H = 〈AT/2ΩE
0 ,Θe−AAT/2ΩE

0 〉E . (VI.4)

The action A = A+ + A− is the sum of positive-time and negative-
time parts A±, with A∗Θ+ = ΘA∗+Θ = A− and A∗Π+ = ΠA∗+Π = A−.

It is also a sum of parts Ã± localized at positive or negative spatial

coordinate x, namely, A = Ã+ + Ã−, with ΠÃ∗+Π = Ã−. Let A′′ =
A∗ΘT/2AT/2, A′ = A∗ΠA, and Ψ′ = (A′ΩE

0 )∧, where A∗ΘT/2 = ΘA∗T/2Θ and

A∗Π = ΠA∗Π. Spatial-reflection positivity, along with invariance of ΩE
0

under Θ and Π and time-translation, implies

〈Ψ, e−THv Ψ〉H = 〈ΩE
0 ,Θe−AA′′ΩE

0 〉E = 〈ΩE
0 ,Πe−AA′′ΩE

0 〉E
6 〈ΩE

0 ,Πe−A ΩE
0 〉

1/2
E 〈A

′′ΩE
0 ,Πe−AA′′ΩE

0 〉
1/2
E

= 〈ΩE
0 ,Θe−A ΩE

0 〉
1/2
E 〈A

′
T/2ΩE

0 ,Θe−AA′T/2ΩE
0 〉

1/2
E

= 〈Ω0, e
−THv Ω0〉1/2H 〈Ψ

′, e−THv Ψ′〉1/2H . (VI.5)

Note that we use the identity

A′′∗ΠA′′ = A′∗ΘT/2A
′
T/2 = AΘΠ

T/2A
∗Θ
T/2A

∗Π
T/2AT/2.

In the Feynman-Kac formula and the inequality (VI.5), we have used
Proposition V.3. In (V.4), we take Ω1 = ΩE

0 and Ω2 = A′′ΩE
0 . �



COMPLEX CLASSICAL FIELDS AND PARTIAL WICK ROTATIONS 27

VII. Classical Fields on the Cylinder X = S1 × Rd−1

In this section we study periodization of time for the classical field.
We are especially interested in the spacetime X = S1 × Rd−1 with S1

parameterized4 by t ∈ [−β
2
, β

2
]. As investigated by Høegh-Krohn [17],

these classical fields yield a positive temperature state of the quantum
field. Define the positive-time and negative-time half-circles S1

+ = [0, β
2
]

and S1
− = [−β

2
, 0], and the positive and negative time half-spaces

X± = S1
± × Rd−1 . (VII.1)

Their intersection

X+ ∩X− = ({0} × Rd−1) ∪ ({β
2
} × Rd−1) (VII.2)

consists of two disjoint copies of Rd−1 forming the boundary ∂X+ of
X+.

VII.1. Reflection Positivity. As proved in Proposition VI.3 of [21],
reflection positivity of D~v carries over to reflection positivity of

Dc(x, x′) =
∞∑

n=−∞

D~v(t− t′ + nβ, ~x− ~x ′) . (VII.3)

Thus, temporal-reflection positivity, 0 6 ϑD~v on L2,+, established in
Proposition III.3, ensures

0 6 ϑDc on K± = L2(X±) .

Therefore, one can quantize functions supported in the positive and
negative-time half-spaces X±, using the reflection positive kernels ϑDc

or Dcϑ on K± for the neutral scalar field.
For the two-point function D~v on L2(Rd) defined in (III.5) periodiza-

tion yields, using (III.6),

Dc(x, x′)=
∑
n∈Z

e−µ |t−t
′+nβ|+δ(t−t′+nβ)

2µ
(~x− ~x ′) (VII.4)

=


1

2µ

(
e−(t−t′)µ−

1−e−βµ−
+ e−(β−(t−t′))µ+

1−e−βµ+

)
(~x− ~x ′) , if t > t′,

1
2µ

(
e(t−t′)µ+

1−e−βµ+
+ e−(β+(t−t′))µ−

1−e−βµ−

)
(~x− ~x ′) , if t < t′,

where µ± = µ± δ is defined in (III.1).

4Here and in other sections describing positive-temperature fields, we denote
β = 1

kBT as the inverse temperature. This is in contrast with the notation in §VI,

where tanh |β| = |~v | denotes the velocity of a Lorentz boost.
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Interpretation. In two different ways, one can connect a point with
negative time, −s ∈ [−β

2
, 0], to a point with positive time, s′ ∈ [0, β

2
].

A trajectory of minimal length can pass through time t = 0, or it can
pass through time t = β

2
. The minimal length of a trajectory through

t = 0 is s+ s′, while that through t = β
2

is β− s− s′. A trajectory may
also wind n > 1 times around the circle, adding a length of nβ to the
minimum. Each of these possibilities contributes a term to the Green’s
function with an exponential decay rate equal to the minimal length
times a corresponding Hamiltonian. In fact, the full Green’s function
is a sum of such terms. In particular, the minimal trajectory through
t = 0 contributes the heat kernel e−(s+s′)µ+ to the Green’s function. As
the length of the trajectory s+ s′ increases with the increase of either
s or s′, the corresponding decay rate increases as well; therefore the
Hamiltonian µ+ is positive. The factor

∞∑
n=0

e−nβµ+ = (1− e−βµ+)−1

in the inner product reflects a correction from including terms labelled
by trajectories that make n > 0 multiple circuits around the circle.
This factor affects the normalization of the state rather than the Hamil-
tonian.

The second term in the Green’s function arises from terms labelled by
the trajectories through t = β

2
. The corresponding minimal trajectory

gives the heat kernel e−(β−s−s′)µ− . The separation β − s− s′ decreases
with increasing s, s′ ∈ [0, β

2
], so the corresponding Hamiltonian −µ−

is negative. The correction factor 1 + ρ− = (1 − e−βµ−)−1 arises from
the sum over circuits from s′ to −s that travel the minimal distance,
but with the constraint that they pass through time t = β

2
, followed by

multiple complete circuits around the circle.

The operators µ± = µ± δ acting on the Hilbert space L2(Rd−1) are
self-adjoint and positive. They satisfy the lower boundm

√
1− ~v 2 6 µ±

of (III.3). Hence,

‖e−βµ±‖ 6 e−mβ
√

1−~v 2

and

‖
(
1− e−βµ±

)−1 ‖ 6
(

1− e−mβ
√

1−~v 2
)−1

.

Consequently, for fixed t and t′, the sum over n ∈ Z in (VII.4) is norm-
convergent in the sense of operators on L2(Rd−1). It is common to
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define

ρ± =
e−βµ±

1− e−βµ±
, so 1 + ρ± =

1

1− e−βµ±
.

Note that

‖ρ±‖ 6 (emβ
√

1−~v 2 − 1)−1 . (VII.5)

This allows us to rewrite (VII.4), for x, x′ ∈X+, as

(ϑDc)(x, x′) =
1

2µ

(
(1 + ρ+)e−(t+t′)µ+ + ρ−e(t+t′)µ−

)
(~x− ~x′) . (VII.6)

The operators ρ± commute with µ, so their norms on H−1/2(Rd−1) agree

with their norms on L2(Rd−1). In Fourier space the function µ(~k) is
real and even, so the operator µ in configuration space is real, acting on
either L2(Rd−1) or on H−1/2(Rd−1). Similarly, δ(k) is real and odd, so

the operator δ in configuration space is purely imaginary, viz., δ = −δ.
Consequently, µ± = µ∓ and, setting ft(~x) = f(t, ~x), one has〈

f, ϑDcg
〉
K =

〈∫ β/2

0

e−tµ+ft dt , (1 + ρ+)

∫ β/2

0

e−t
′µ+gt′ dt

′
〉
H− 1

2

+
〈∫ β/2

0

etµ+ρ
1/2
+ ft dt ,

∫ β/2

0

etµ+ρ
1/2
+ gt′ dt

′
〉
H− 1

2

. (VII.7)

Remark VII.1. Let s ∈ R, 0 6 t 6 β
2

and α ∈ H− 1
2
. Eq. (VII.6) suggests

to consider the analytic map

s+ it 7→
(
ei(s+it)µ+(1 + ρ+)1/2α , e−i(s+it)µ−ρ

1/2
− α

)
∈ H− 1

2
⊕ H− 1

2
.

Note that the action of the time-evolution s 7→ eisµ+ in the second com-
ponent is oriented toward the past, and µ+ is replaced by its complex
conjugate µ− = µ+. Both aspects can be avoided by using a com-
plex conjugate Hilbert space in the second component, as suggested
by the equivalent formula for

〈
f, ϑDcg

〉
K given in Eq. (VII.12); see

Section VII.3.

VII.2. Estimates on the Kernels. The operator Dc can be decom-
posed into its hermitian and skew-hermitian parts on K,

Dc = Kc + iLc .

The operators Dc, Kc, Lc and their kernels Dc(x, x′), Kc(x, x′), etc.,
have elementary Fourier representations, almost identical to the ex-
pression for the continuum Fourier transform, such as (VII.8) in the
case ofD~v(x, x′). As a consequence, this entails operator bounds similar
to those established in §III.1 prior to compactification. We formulate
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these properties in the following proposition. Let us denote the lat-
tice of energy values dual to [0, β] by Lβ = 2π

β
Z, known as Matsubara

frequencies in the physics literature.

Theorem VII.2. The kernel Dc(x, x′) has the representation

Dc(x, x′) =
1

β

∑
E∈Lβ

1

(2π)d−1

∫
Rd−1

d~k
eiE(t−t′)+i~k(~x−~x′)

(E + iδ)2 + µ(~k)2
. (VII.8)

The operators Kc, Lc, Dc, |Dc|, and Cc mutually commute and satisfy

Kc 6 |Dc| 6 (1− ~v 2)−1/2Kc .

In particular, Dc is invertible. Moreover,

1
2

(
1− ~v 2

)
Cc < Kc < (1− ~v 2)−2Cc (VII.9)

and supk

∣∣∣ L̃c(k)

K̃c(k)

∣∣∣ = |~v |√
1−~v 2 . Also,

1
2

(
1− ~v 2

)
Cc < |Dc| < (1− ~v 2)−5/2Cc . (VII.10)

Proof. The operator Dc(x, x′) is periodic in t − t′ with period β. To
establish its Fourier representation, we consider the Fourier series in
the variable ξ = t− t′. Similar to the proof of Proposition II.4 of [19],
but for operators,

(1 + ρ−)

∫ β

0

e−(µ−+iE)ξ dξ =
1

µ− + iE
,∫ β

0

e(µ+−iE)ξρ+ dξ =
1

µ+ − iE
,

and µ+ + µ− = 2µ. Use the representation (VII.4) for ξ > 0. One has
the E-dependent operator DE on H− 1

2
defined by

DE(x, x′) =

∫ β

0

Dc(x, x′)e−iEξ dξ .

It follows that

DE =
1

2µ

(
1

µ− + iE
+

1

µ+ − iE

)
=

1

(µ− + iE)(µ+ − iE)

=
1

(E + iδ)2 + µ2
.
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In terms of the integral kernel DE(~x− ~x ′), one has

Dc(x, x′) =
1

β

∑
E∈Lβ

eiE(t−t′) DE(~x− ~x ′) ,

which is equivalent to (VII.8).
The operators Kc, Lc, Dc, and Cc are all translation invariant and

hence mutually commute, as well as with their adjoints and functions
defined by the spectral theorem. The remaining statements are esti-
mates on the operators that follow by comparing their Fourier repre-
sentations. Since the Fourier representation of Dc(x, x′) agrees with
that of D~v(x, x′) for specific values of E, the inequalities established in
§III.1 hold here as well, after translation of the constants to the present
notation by substituting tanh |β| 7→ |~v |. �

Corollary VII.3. The operator Dc extends to H−1(X).

Proof. Proposition VII.2 ensures that Dc has a square root Dc 1
2 . De-

note the constant (1−~v 2)−5/2 in (VII.10) of Proposition VII.2 by M2.
It follows that

‖Dc 1
2f‖K = 〈f, |Dc|f〉1/2K (VII.11)

6M〈f, Ccf〉1/2K
= M‖f‖H−1(Xc) .

Hence, Dc extends to H−1(X). �

Note that the function δs⊗α has Fourier representation proportional

to e−isE α̃(~k). Thus,

‖δs ⊗ α‖2
H−1(Xc) =

1

β

∑
E∈Lβ

∫
Rd−1

|α̃(~k)|2

E2 + µ(~k)2
d~k .

This sum is real and positive, so there is a constant M̃ = 1 + O( 1
β
)

such that it can be estimated by a multiple of the Riemann integral it
approximates. Then

‖δs ⊗ α‖2
H−1(Xc) 6

M̃

2π

∫
E∈R

dE

∫
Rd−1

|α̃(~k)|2

E2 + µ(~k)2
d~k

= M̃‖α‖2
H− 1

2
(Rd−1) .

Thus, for α ∈ H− 1
2
(Rd−1), the generalized function δs⊗α is an element

of the Sobolev space H−1(X).
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VII.3. Thermal Quantization Maps. We can write (VII.7) as〈
f, ϑDcg

〉
K =

〈∫ β/2

0

e−tµ+ft dt , (1 + ρ+)

∫ β/2

0

e−t
′µ+gt′ dt

′
〉
H− 1

2

+
〈∫ β/2

0

etµ+ρ
1
2
+ gt dt ,

∫ β/2

0

etµ+ρ
1
2
+ ft′ dt

′
〉
H− 1

2

, (VII.12)

where f denotes the complex conjugate of the function f . The two
terms appearing on the right hand side in (VII.12) are related to the
two disjoint components of the boundary ∂X+ of X+ as discussed in
the interpretation provided in Section VII.1. The special form of these
two terms can be accommodated for by the following points:

i.) Identify the one-particle Hilbert space H1 with

H− 1
2
(Rd−1)⊕ H− 1

2
(Rd−1) , (VII.13)

where the second factor in the direct sum denotes the Hilbert
space that is complex-conjugate5,6 to H− 1

2
(Rd−1); and,

ii.) Define two bounded linear maps κ± : H− 1
2
(Rd−1)→ H1 (see [1])

by

κ± : α 7→
(

(1 + ρ±)1/2α, ρ
1/2
± α

)
. (VII.14)

This will allow us to define the quantization maps ∧±. Before we do
so, we mention the following property of κ±.

Proposition VII.4. Define `± = µ± ⊕ (−µ∓). The maps

R 3 s 7→ κ±(eisµ±α) = eis`±κ±(α) ,

extend analytically to the strip {s + it ∈ C | 0 < t < β
2
}. Moreover,

they satisfy one-particle β-KMS conditions: For α, α′ ∈ H− 1
2
(Rd−1) and

s ∈ R, we have

〈κ±(α), κ±(e(is−β)`±α′)〉H1 = 〈κ(eis`±α′), κ(α)〉H1 . (VII.15)

We can now define two one-particle quantization maps ∧± : K+,0 7→
H1 by setting

f̂ ±(~x) =

∫ β/2

0

e−t`±κ±(ft(~x)) dt . (VII.16)

5Let h be a complex Hilbert space of functions. Then the conjugate Hilbert space
h is defined as the Hilbert space h with the complex structure −i and the inner
product 〈h1, h2〉h = 〈h2, h1〉h. There is a natural C-linear map h 7→ h given by

f 7→ f , the complex-conjugate of the function f .
6In Dirac’s notation, if |f〉 ∈ h, then 〈g| ∈ h. Clearly, |λf〉 = λ|f〉 and 〈µg| = µ〈g|

for λ, µ ∈ C. Thus, the map |f〉 7→ 〈f | is linear.
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K+,0 ⊂ K+ is the dense subset defined as the linear span of C∞0 (S1
+)×

C∞0 (Rd−1).

Proposition VII.5. The maps ∧± agree with the Osterwalder-Schrader
quantizations defined by ϑDc and Dcϑ. Namely, for f, g ∈ K+,0,

〈f, ϑDcg〉K =
〈
f̂ +, ĝ +

〉
H1

〈f,Dcϑg〉K =
〈
f̂ −, ĝ −

〉
H1
.

They extend by continuity to sharp-time test functions f = δs⊗α, with
s ∈ [0, β

2
] and α ∈ H− 1

2
(R(d−1)). Explicitly,

〈
δ̂s ⊗ α

±
, ̂δs′ ⊗ α′

±〉
H1

=

{
〈α, (ϑDc)(s, s′)α′〉H− 1

2

, in case + ,

〈α, (ϑDc)(s, s′)α′〉H− 1
2

, in case − .

Proof. We have〈
f, ϑDcg

〉
K =

〈∫ β/2

0

e−t`+κ+(ft) dt ,

∫ β/2

0

e−t
′`+κ+(gt′) dt

′
〉
H1〈

f,Dcϑg
〉
K=

〈∫ β/2

0

e−t`−κ−(ft) dt ,

∫ β/2

0

e−t
′`−κ−(gt′) dt

′
〉
H1

.

This verifies the first two statements. Next, note that ϑKc = Kcϑ and
ϑLc = −Lcϑ, so ϑDc 1

2 = (Dc 1
2 )∗ϑ. Hence,

〈f, ϑDcf〉K = 〈f, ϑDc 1
2Dc 1

2f〉K = 〈Dc 1
2f, ϑDc 1

2f〉K .

As ϑ is unitary, one can use the Schwarz inequality in K, as well as
inequality (VII.10) of Proposition VII.2. Moreover, we have seen in
(VII.11) that there is a constant M <∞ such that for all f ∈ K+,0,

‖f̂ ±‖H1 6M‖f‖H−1(X) . (VII.17)

As K+,0 is dense in H−1(X), (VII.17) ensures that the maps ∧± extend
by continuity to maps from H−1(X+) to H1. For s, s′ ∈ S1

+ fixed, one
can interpret ϑDc(x, x′) as defining a transformation on the Sobolev
space H− 1

2
(Rd−1), namely,

(ϑDc)(s, s′) = (1 + ρ+)e−(s+s′)µ+ + ρ+e(s+s′)µ+ (VII.18)

for s, s′ ∈ S1
+. Similarly, for s, s′ ∈ S1

+,

(Dcϑ)(s, s′) = (1 + ρ−)e−(s+s′)µ− + e(s+s′)µ−ρ− . (VII.19)

Also, ϑDc(s, s′) = Dcϑ(s, s′). Thus, (VII.17) follows from (VII.18) and
(VII.19). �
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We summarize our results in a commutative diagram that relates
quantization, compactification, and the Araki-Woods maps κ±:

H−1(Rd+)
compactification−−−−−−−−−−−−−→ H−1(S1

+ × Rd−1)y∧± y∧±
H− 1

2
(Rd−1)

κ±−−−−−−−−−−−−−→ H− 1
2
(Rd−1)⊕ H− 1

2
(Rd−1) .

Remark VII.6. The maps κ± (and thus also the maps ∧±) are linear.
We might as well define two anti-linear maps κ′± : K+,0 7→ H1 by setting

κ′±(α) =
(
ρ

1/2
± α, (1 + ρ±)1/2α

)
. (VII.20)

For α ∈ H− 1
2
(Rd−1), the map R 3 s 7→ κ′±(eisµ±α) = eis`±κ′±(α) extends

analytically to the strip {s + it ∈ C | −β
2
< t < 0}. This leads to two

anti-linear quantization maps #±, namely,

f#±(~x) =

∫ −β/2
0

e−t`±κ′±(ft(~x)) dt .

VII.4. Time Translation and its Unbounded Quantization. Let
T (s) denote the unitary time translation group on K = L2(X), by

T (s)ft = ft−s , or (T (s)f)(t, ~x) = f(t− s, ~x) .

The periodicity of time causes a problem for the quantization of T (s).
The function T (s)ft, for 0 6 s, is supported at positive-time (i.e., in the
time-interval [0, β

2
]), only if ft is supported in the time-interval [0, β

2
−s].

The domain of T̂ (s)
±

does not include all of K̂±+, and consequently

T̂ (s)
±

must be unbounded. Recall `± = µ± ⊕ (−µ∓).

Proposition VII.7. Let s ∈ (0, β
2
) and let Ds be the linear span of

δt⊗α for t ∈ [0, β
2
− s]. The quantizations T̂ (s)

±
of T (s) with domains

D̂±s have self-adjoint closures on H1. Explicitly, these are given by

T̂ (s)
±

= e−s`± . (VII.21)

The spectrum of `+ and `− is R \ (−M,M), where M = m
√

1− ~v 2.

Remark VII.8. Returning from the rescaled time to the proper time
amounts to replacing `± by (1 − ~v 2)−1/2`±. The latter has spectrum
R \ (−m,m).

Proof. The fact that the quantizations of Ds are dense in H1 follows

from Proposition VII.9. The matrix elements of T̂ (s)
±

in sharp-time
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vectors follow from Proposition VII.5. If one restricts α to have its
Fourier transform supported on a fixed compact domain, then both µ±,

as well as T̂ (s)
±

, are bounded operators on such a subspace. Such

subspaces of functions are dense in H− 1
2
, so both T̂ (s)

+
and T̂ (s)

−
are

essentially self-adjoint. The spectral properties follow from those of µ±
established in §III. �

Proposition VII.9. Let Ds1,s2 denote the linear span of generalized
functions of the form δs ⊗ α, with α ∈ H− 1

2
and s = s1 or s = s2 for

s1 6= s2. Then D̂±s1,s2 are dense in H1.

Proof. We show that the range under quantization of two distinct sharp
times s1, s2 gives a core of H1. On the contrary, suppose there exists
a unit vector χ ∈ H1 with components χ1, χ2, which is orthogonal to

all vectors of the form δ̂sj ⊗ α
+

for j = 1 and j = 2. According to this
assumption,〈

χ, δ̂s ⊗ α
+〉
H1

= 〈χ1, (1 + ρ+)1/2e−sµ+α〉H− 1
2

+
〈
χ2, (1 + ρ−)1/2e−(β

2
−s)µ−α

〉
H− 1

2

= 0

for all α ∈ H− 1
2
(Rd−1) and for s = s1, s2. Taking adjoints in the inner

products, as µ∗± = µ∓ and ρ∗± = ρ∓, we infer

(1 + ρ−)1/2e−sjµ−χ1 = −(1 + ρ+)1/2e−(β
2
−sj)µ+χ2 (VII.22)

for j = 1, 2. There is no loss of generality to assume s1 < s2, so
e−(s2−s1)µ− is bounded. Thus, we arrive at the following system of
equations

(1 + ρ−)1/2e−s2µ−χ1 = −e−(s2−s1)µ−(1 + ρ+)1/2e−(β
2
−s1)µ+χ2 ,

(1 + ρ−)1/2e−s2µ−χ1 = −(1 + ρ+)1/2e−(β
2
−s2)µ+χ2 .

Eliminating χ1 yields

e−(s2−s1)µ−(1 + ρ+)1/2e−(β
2
−s1)µ+χ2 = (1 + ρ+)1/2e−(β

2
−s2)µ+χ2 .

Note that µ+, µ−, ρ+ and ρ− all commute. Thus, multiplying both

sides with (1 + ρ+)−1/2e(β
2
−s2)µ+ , we arrive at

χ2 = e−(s2−s1)(µ++µ−)χ2 = e−2(s2−s1)µχ2 , (VII.23)

where we use µ+ + µ− = 2µ. But 0 < s2 − s1 and 0 < m 6 µ, so
‖e−2(s2−s1)µ‖ < 1. Thus, (VII.23) can only hold in case χ2 = 0, and
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(VII.22) implies χ1 = 0, since (1+ ρ−)1/2e−sjµ− is not singular. Hence,
χ ≡ 0, which contradicts the assumption ‖χ‖ = 1. �

VII.5. The Tomita-Takesaki Operators. We introduce a time-re-
flection operator θ that leaves X± invariant by

θ : (t, ~x) 7→ (β
2
− t, ~x) .

Thus, θ reflects the time about t = ±β
4
, depending on whether t is

positive or negative. It follows that

θL2(X±) = L2(X±) .

Acting on L2(X), or on L2(S1) × H−1/2(Rd−1), the operator θ is a
self-adjoint, real, symmetric, idempotent, and commutes with ϑ,

θ∗ = θ = θ , θ2 = 1 , ϑθ = θϑ .

Consequently, θ commutes with ϑDc(t, t′). The map f 7→ θf maps ft 7→
fβ

2
−t, and thus induces an anti-linear involution whose quantization is

the Tomita-Takesaki modular conjugation. In order to verify this claim,
we define the relevant modular objects. The spaces

L± = κ±
(
H− 1

2
(Rd−1)

)
are real subspaces in H1 = H− 1

2
(Rd−1)⊕H− 1

2
(Rd−1). Multiplication by

(i⊕−i) preserves the subspaces L±, but multiplication by i = (i⊕ i)
does not. Moreover,

i.) L± ∩ iL± = {0};
ii.) L± + iL± is dense in H1.

It is interesting to note that

iL± = κ′±
(
H− 1

2
(Rd−1)

)
.

Eckmann and Osterwalder [7] have shown that, whenever a real sub-
space of a Hilbert space satisfies i.) and ii.), one can define an anti-
linear operator s± by setting

s± : L± + iL± → L± + iL±
k + ik′ 7→ −k + ik′.

The operator s± are closable. The polar decompositions of their closure

s± = jδ
1/2
± , (VII.24)

define the modular conjugation j, the modular operators δ
1/2
± , and the

one-particle Liouvillian L±. In our case, j maps (f, g) to (−g,−f).
Thus,

j ◦ κ± = −κ′± , and jL± = iL± . (VII.25)
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The modular operator δ
1/2
± is related to the one-particle Liouvillian,

δ
1/2
± = e−β`±/2 , with `± = µ± ⊕ (−µ∓) . (VII.26)

We summarize our results.

Proposition VII.10. Let C denote the anti-linear operator of complex
conjugation C f = f . Then one has the commutative diagram:

H−1(X+)
θC //

∧±
��

#±

''

H−1(X+)

∧±
��

H1
j // H1 .

VII.6. The Araki-Woods Fock Space. The one-particle spaceH1 =
H− 1

2
(Rd−1) ⊕ H− 1

2
(Rd−1) gives rise to a Fock space of the form (III.4).

The elements of (h, h′) ∈ H1 have two components, namely h ∈ H− 1
2
(Rd−1)

and h′ ∈ H− 1
2
(Rd−1). The Fock annihilation operator

a(h⊕ h′) =
(∫

Rd−1

h(~x)a(~x)d~x
)
⊕
(∫

Rd−1

h′(~x′) a(~x′) d~x′
)

(which is actually a densely-defined bilinear form on H×H) has non-
vanishing matrix elements from Hn to Hn−1. In the Fourier represen-
tation it acts as

(a(~k ⊕ ~k′)f)n−1(~k1 ⊕ ~k′1, . . . , ~kn−1 ⊕ ~k′n−1)

=
√
n fn(~k ⊕ ~k′, ~k1 ⊕ ~k′1, . . . , ~kn−1 ⊕ ~k′n−1) .

and satisfies [a(~k1 ⊕ ~k′1), a(~k2 ⊕ ~k′2)] = 0. The adjoint creation form

a(~k ⊕ ~k′)∗ satisfies the usual canonical relations, namely,

[a(~k1 ⊕ ~k′1), a∗(~k2 ⊕ ~k′2)] = δ(~k1 − ~k2)⊕ δ(~k′1 − ~k′2) .

The hermitian time-zero field ϕ(~x⊕ ~x′) on R
d−1 × Rd−1 is defined as

ϕ(~x⊕ ~x′) = (2π)−
d−1

2

∫
d~k√
2µ(~k)

(
a∗(~k) + a(−~k)

)
e−i

~k·~x

⊕ (2π)−
d−1

2

∫
d~k′√
2µ(~k′)

(
a∗(~k′) + a(−~k′)

)
e−i

~k′·~x′ .

The Liouvillean L±, the momentum operator ~P , the modular con-
jugation J and the Tomita operator S act on H1 as `±, ~p, j and s,
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respectively. Note that

Ω0 ∈ D(L±) and L±Ω0 = 0 .

The spectrum of L± is the real line R, and its zero eigenvalue is simple.
The latter follows from the gap in the spectrum of `± [23, Theorems
1a & 1b].

VII.7. Quantization of Field Operators. The quantization map
(VII.16) for vectors fixes the quantization map for the field operators,
as we require that

Φ̂(f)
±

Ω̂
±

= Φ̂(f)Ω
±

for Ω ∈ D(Φ(f)) ∩ E± . (VII.27)

This implies that

〈(Φ̂(f)
±

)n Ω0, (Φ̂(f)
±

)n Ω0〉H = 〈Φ(f)nΩE
0 ,Θ±Φ(f)nΩE

0 〉E
= (2n− 1)!!〈f̂±, f̂± 〉nH1

, (VII.28)

where Θ± are the reflections associated to ϑDc and Dcϑ, respectively.
As before, H1 = H− 1

2
⊕ H− 1

2
and

〈f̂±, f̂±〉H1 =
∥∥∥ ∣∣∫ β/2

0

e−tµ±(1 + ρ±)1/2ft dt ,

∫ β/2

0

etµ±ρ
1
2
± ft dt

〉 ∥∥∥2

H1

.

The Gaussian nature of the Fock space E together with Proposition VII.5
imply that (VII.28) is satisfied if we set

Φ̂(f)
±

= ϕ(f̂±) , f ∈ E1 ∩ E± .

Note that f̂± has two components, and therefore f̂± can be viewed as
a function on R

d−1 × Rd−1. For certain sharp-time functions, f and g,
the quantized field operators take a special form.

Proposition VII.11. For f = δ ⊗ α with α ∈ H− 1
2
(Rd−1), we have

Φ̂(f)
±

= Φ̂(0, α)
±

= ϕ
(
κ±(α)

)
. (VII.29)

Moreover, for g = δβ
2
⊗ α, where δβ

2
(t) = δ(t − β

2
) denotes the shifted

Dirac delta function, we have

Φ̂(g)
±

= Φ̂(β
2
, α)

±
= ϕ

(
κ′±(α)

)
. (VII.30)
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Proof. The identity (VII.29) follows from (VII.27) and (VII.16). The
second identity, (VII.30), follows from

ĝ± = e−β`±/2κ±(α)

=
(

e−βµ±/2(1 + ρ±)1/2α, eβµ±/2ρ
1/2
± α

)
=
(
ρ

1/2
± α, (1 + ρ±)1/2α

)
= κ′±(α) .

�

The bounded functions of the time-zero fields generate abelian von
Neumann algebras

U±0 = {Φ̂(0, α)
±
| α ∈ H− 1

2
(Rd−1)}′′ .

Similarly, the bounded functions of the time-β
2

fields generate another
two abelian von Neumann algebras,

U±β
2

= {
̂

Φ(
β

2
, α)

±

| α ∈ H− 1
2
(Rd−1)}′′ .

Not only do they commute with each other, but also their time trans-
lates commute with each other. For α ∈ H− 1

2
(Rd−1) and s ∈ R,

ϕ±(s, α) = eisL±ϕ(κ±(α))e−isL± ,

ϕ′±(s, α) = eisL±ϕ(κ′±(α))e−isL± .

We will also use ϕ±(α) = ϕ±(0, α) and ϕ′±(α) = ϕ′±(0, α).

Proposition VII.12. For α, α′ ∈ H− 1
2
(Rd−1) and s, s′ ∈ R, ,[

ϕ±
(
−s, α

)
, ϕ′±

(
s′, α′

)]
= 0 .

In particular, for α, α′ ∈ H− 1
2
(Rd−1),[

Φ̂(0, α)
±
, Φ̂(β

2
, α′)

±]
= 0.

Proof. We compute

〈eisL±ϕ
(
κ±(α)

)
Ω0, e

itL±ϕ
(
κ′±(α′)

)
Ω0〉H

= 〈eis`±κ±(α), eit`±κ′±(α′)〉H1

= 〈eisµ±α, ρ1/2
± (1 + ρ±)1/2, eitµ±α′〉H− 1

2
(Rd−1)

+ 〈e−itµ±α′, ρ1/2
± (1 + ρ±)1/2e−isµ±α〉H− 1

2
(Rd−1) .
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Similarly,

〈e−itL±ϕ
(
κ′±(α′)

)
Ω0, e

−isL±ϕ
(
κ±(α)

)
Ω0〉H

= 〈e−it`±κ′±(α′), e−is`±κ±(α)〉H1

= 〈e−itµ±α′, ρ1/2
± (1 + ρ±)1/2, e−isµ±α〉H− 1

2
(Rd−1)

+ 〈eisµ±α, ρ1/2
± (1 + ρ±)1/2eitµ±α′〉H− 1

2
(Rd−1).

Therefore, the expectation of the commutator vanishes. As the commu-
tator is a scalar, it must equal zero. The second commutator claimed
to vanish is a special case, as the fields on the boundary can obtained
from (VII.30). �

That is, the adjoint action of the unitary group eitL± , t ∈ R, on U±0
and U±β

2

gives rise to two commuting non-abelian algebras,

R±0 = {ϕ±(s, α) | s ∈ R, α ∈ H− 1
2
(Rd−1)}′′ (VII.31)

and

R±β
2

= {ϕ′±(s, α) | s ∈ R, α ∈ H− 1
2
(Rd−1)}′′ , (VII.32)

respectively.

Proposition VII.13. Let αi ∈ H− 1
2
(Rd−1) and 0 6 si, 1 6 i 6 n.

Moreover, assume that
∑n

j=1 sj 6
β
2
. Then

e−sn−1L±ϕ±(αn−1) · · · e−s1L±ϕ±(α1)Ω0 ∈ D
(
ϕ±(αn)

)
and

ϕ±(αn)e−sn−1L±ϕ±(αn−1) · · · e−s1L±ϕ±(α1)Ω0 ∈ D
(
e−snL±

)
.

Furthermore, the linear span of such vectors is dense in H and

e−snL±ϕ±(αn)e−(sn−1+sn)L±ϕ±(αn−1) . . . e−(s1−s2)L±ϕ±(α1)Ω0

=
(

Φ(sn, αn)Φ(sn−1, αn−1) · · ·Φ(s1, α1)ΩE
0

)∧±
. (VII.33)

Proof. Let T (s) be the second quantization of the unitary time trans-
lation T (s) introduced in Section VII.4. Its quantization is the second
quantization of e−s`± , i.e.,

T̂ (s)
±

= e−sL± .

It follows that for 0 6 si, 1 6 i 6 n, and
∑n

j=1 sj 6
β
2
,

T (sn−1)Φ(0, αn−1) · · ·T (s1)Φ(0, α1)ΩE
0 ∈ D (Φ(0, ααn))
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and

Φ(0, αn)T (sn−1)Φ(0, αn−1) · · ·T (s1)Φ(0, α1)ΩE
0 ∈ D (T (sn)) .

The results now follow from (VII.33). The fact that the linear span of
such vectors is dense in H is a consequence of Proposition VII.9. �

Proposition VII.14. Let αi ∈ H− 1
2
(Rd−1), for 1 6 i 6 n. If 0 6 s1 6

· · · 6 sk 6
β
2
6 sk+1 6 . . . 6 sn 6 β, then〈

ΩE
0 ,

n∏
j=1

Φ(sj, αj)Ω
E
0

〉
(VII.34)

=
〈

e(sn−β)L±ϕ±(αn)e(sn−1−sn)L±ϕ±(αn−1) · · · e(sk+1−sk+2)L±ϕ±(αk+1)Ω0 ,

e−s1L±ϕ±(α1)e(s1−s2)L±ϕ±(α2) · · · e(sk−1−sk)L±ϕ±(αk)Ω0

〉
.

Moreover,

‖e−(β/2)L±ϕ±(αn) · · ·ϕ±(α1)Ω0

∥∥
H = ‖ϕ±(αn) · · ·ϕ±(α1)Ω0

∥∥
H .

Proof. If 0 6 s1 6 . . . 6 sk 6
β
2

and β
2
6 sk+1 6 . . . 6 sn 6 β,

then according to Proposition VII.13 the right hand side in (VII.34) is
well-defined and equals〈

(Φ(β − sn, αn) · · ·Φ(β − sk+1, αk+1)ΩE
0

)∧± ,(
Φ(sk, αk) · · ·Φ(s1, α1)ΩE

0 )∧±
〉
H

=
〈( n∏

j=k+1

Φ(β − sj, αj)
)

ΩE
0 ,Θ±

( k∏
j=1

Φ(sj, αj)
)

ΩE
0

〉
E

=
〈(

T (β)
n∏

j=k+1

Φ(−sj, αj)
)

ΩE
0 ,Θ±

( k∏
j=1

Φ(sj, αj)
)〉
E

=
〈( n∏

j=k+1

Φ(−sj, αj)
)

ΩE
0 ,Θ±

( k∏
j=1

Φ(sj, αj)
)〉
E

=
〈
ΩE

0 ,

n∏
j=1

Φ(sj, αj)Ω
E
0

〉
E .

We made use of T (β) = 1, which holds by periodicity. By Proposition
VII.13 we have

ϕ±(αn)ϕ±(αn−1) · · ·ϕ±(α1)Ω0 ∈ D
(
e−βL±/2

)
.
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Now∥∥e−βL±/2ϕ±(αn)ϕ±(αn−1) · · ·ϕ±(α1)Ω0

∥∥2

H

=

∥∥∥∥(T (β/2)Φ(0, αn) · · ·Φ(0, α1)ΩE
0

)∧±∥∥∥∥2

H

=
〈
T (β/2)Φ(0, αn) · · ·Φ(0, α1)ΩE

0 , Θ±T (β/2) Φ(0, αn) · · ·Φ(0, α1)ΩE
0

〉
E

=
〈
Φ(0, αn) · · ·Φ(0, α1)ΩE

0 , T (−β/2) Θ±T (β/2) Φ(0, αn) · · ·Φ(0, α1)
〉
E

=
〈
Φ(0, αn) · · ·Φ(0, h1)ΩE

0 , Θ±T (β) Φ(0, αn) · · ·Φ(0, h1)ΩE
0

〉
=
∥∥∥(Φ(0, αn) · · ·Φ(0, α1)ΩE

0

)∧±∥∥∥2

H

= ‖ϕ±(αn)ϕ±(αn−1) · · ·ϕ±(α1)Ω0‖2
H ,

again using T (β) = 1. �

Proposition VII.15. (Special case of Theorem 2.5.14. in [4])

i.) The adjoint action of the unitary group {exp(itL±) | t ∈ R}
leaves the algebras R±0 and R±β/2 invariant;

ii.) The identity holds, JR±0 J = (R±0 )′ = R±β/2; and,

iii.) The operator S± is closed, its polar decomposition is

S± = Je−βL±/2

and S±AΩ0 = A∗Ω0 for all A ∈ R±0 . For B ∈ R±β/2, one has
S∗±BΩ = B∗Ω0.

Proof. Property i.) follows from Proposition VII.12. Property iii.) fol-
lows from the fact that S±, J , and L± are the second quantizations of
the one particle operators s±, j, and `± which satisfy (VII.24). Finally,
Property ii.) follows from (VII.25). �

Corollary VII.16. The vector Ω0 induces a unique KMS state for the
quantum dynamical systems (R±0 , eitL±) associated to the one-particle
Hamiltonians µ± acting on the Sobolev space H− 1

2
(Rd−1), i.e., for bounded

operators A,B ∈ R0 the functions

R 3 t 7→ F±A,B(t) = 〈Ω0, AeitL±BΩ0〉
extend to an analytic functions in the strip z = t+ is with 0 < s < β,
with continuous boundary values given by

F±A,B(t+ iβ) = 〈Ω0, Be−itL±AΩ0〉 . (VII.35)

This KMS state is Gaussian and its two-point function is

〈ϕ±(0, α)Ω0, ϕ±(t′, α′)Ω0〉H =
〈
α , coth(βµ±) eit

′µ±α′
〉
H− 1

2

.



COMPLEX CLASSICAL FIELDS AND PARTIAL WICK ROTATIONS 43

The GNS representation associated to the pairs (R±0 , 〈Ω0, ·Ω0〉) are the
Araki-Woods representations (see Section VII.6).

Proof. The KMS condition (VII.35) follows directly from Theorem VII.15
(iii). Uniqueness of the KMS state follows from the commutation re-
lations, the KMS condition and m > 0. The fact that the GNS rep-
resentation associated to the pair (R±0 , 〈Ω0, ·Ω0〉) is the Araki-Woods
representation follows from the fact that Ω0 is cyclic for R±0 . �

VIII. Classical Fields on the d-Torus X = T
d

In this section we study periodization of both time and spatial di-
rections. Thus, we are interested in the spacetime for the classical field
given by X = S1 × Td−1 = T

d with S1 a circle of circumference β, and
T
d is the d-dimensional torus. Let, as before, Λ =

∏d−1
j=1 `j denote the

spatial volume of the torus Td−1.

VIII.1. The two-point function. The fully compactified covariances
Dc
±,β,Λ = Dc ∗

∓,β,Λ arise form the covariance D~v by compactifying both
the time and the spatial coordinates. For the kernels this yields

Dc
±,β,Λ(x− x′) (VIII.1)

=
θ(t′ − t)

Λ

∑
~k∈KΛ

1

2µ(~k)

(
e−(t′−t)µ±(~k)

1− e−βµ±(~k)
+

e−(β−(t′−t))µ∓(~k)

1− e−βµ∓(~k)

)
e−i

~k·(~x−~x′)

+
θ(t− t′)

Λ

∑
~k∈KΛ

1

2µ(~k)

(
e−(t−t′)µ∓(~k)

1− e−βµ∓(~k)
+

e−(β−(t−t′))µ±(~k)

1− e−βµ±(~k)

)
e−i

~k·(~x−~x′) ,

where θ(t) denotes the characteristic function for the half-line t > 0.
The kernels

Dc
+,β,Λ(x− x′) = Dc

−,β,Λ(x− x′)
have smooth limits as each `j → ∞ converging in the limit of infinite
volume to the kernels

Dc(x− x′) = 〈Aϕ+
I (x)ϕ+

I (x′)〉β,±
introduced to study the time compactification in (VII.4), in the same
sense that a Fourier series approximates a Fourier transform. The sum

over each coordinate of ~k converges to a Riemann integral, and the
limiting kernels coincide with the operators Dc introduced in (VII.4).
The corresponding anti-time-ordered two-point functions also converge.

The operators Dc act on L2(S1 × R
d−1). Likewise, Dc

+,β,Λ acts on

L2(S1 × T
d−1). In all cases, these operators equal the inverse of the
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corresponding differential operators

D−1
~v = −∆ +m2 + (∇~x · ~v)2 − 2i ∂

∂t
(∇~x · ~v) ,

originally introduced in (III.20) on R
d, but here acting on these (par-

tially or fully) compactified spacetimes.
As such Dc and Dc

+,β,Λ are doubly temporally reflection-positive. The
operator Dc is doubly spatially reflection-positive in the direction ~n.
The same is true for Dc

+,β,Λ in case ~n lies along a lattice coordinate
direction.

VIII.2. Quantization. The Osterwalder-Schrader quantization from
the d-torus results in only minor changes7 to the results presented in
§VII. The Araki-Woods one-particle Hilbert space H1(Λ), which arises
from Osterwalder-Schrader quantization, is now

H1(β,Λ) = H− 1
2
(Td−1)⊕ H− 1

2
(Td−1) .

The associated Fock space is again of the form (III.4). The elements
of (h, h′) ∈ H1 have two components, namely h ∈ H− 1

2
(Td−1) and

h′ ∈ H− 1
2
(Td−1).

The Liouvillean L±, the momentum operator ~P , the modular conju-
gation J and the Tomita operator S act on H1(β,Λ) as `±, ~p, j and s.
Note that

Ω0 ∈ D(L±) and L±Ω0 = 0

still holds. However, the spectrum of L± of is discrete (and symmetric),
and the discrete eigenvalue zero is infinitely degenerated.

Remark VIII.1. The spectral properties can be understood by consid-
ering Gibbs states on R× Td−1; see Remark IV.1 of §IV. Using energy
eigenvectors Ψ±i ,

H±Ψ±i = E±i Ψ±i with Ei ∈ R+ ∪ {0} .
The Gibbs density matrix8 takes the form

e−βH±(Λ)

Tr e−βH±(Λ)
=

∑
i e
−βE±i |Ψ±i 〉〈Ψ±i |∑

k e−βE
±
k

, β > 0 . (VIII.2)

The GNS representation for the state given by the Gibbs density matrix
is of the form

B(HΛ) 3 A 7→ A⊗ 1 , (VIII.3)

7The one-particle space H− 1
2

and the Laplace operator have to be adapted to

periodic boundary conditions.
8The following arguments hold true in the interacting case too.
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acting on the tensor product HΛ ⊗HΛ of the Hilbert space HΛ intro-
duced in (IV.1) with itself. The cyclic vector, i.e., the GNS vector,

|√ρ±〉 =

∑
i e
−βE±i /2√∑
k e−βE

±
k

Ψ±i ⊗Ψ±i

induces the Gibbs state, i.e.,

Tr e−βH±(Λ)A

Tr e−βH±(Λ)
= 〈√ρ± , (A⊗ 1)

√
ρ±〉 , A ∈ B(HΛ) .

The generator of the time evolution in the GNS representation is

L± = H±(Λ)⊗ 1− 1⊗H±(Λ) .

In finite volume Λ, the Araki-Woods representation on the Fock space
over the one-particle space H1(β,Λ) resulting form the Osterwalder-
Schrader quantization is unitarily equivalent to the GNS representation
(VIII.3). However, in the infinite volume case discussed in §VII, the
von Neumann algebras R0 and R′0 = Rβ/2 introduced in (VII.31) and
(VII.32), respectively, are both factors of type III and, consequently,
their von Neumann tensor product is type III as well, in contrast to
R0 ∨R′0 = B(Hβ).

The fact that the spectrum of L± is discrete and symmetric, and the
infinite degeneracy of the eigenvalue zero cause a number of problems.
However, it is instructive to consider the map N±Λ : B(HΛ)→ HΛ⊗HΛ,

A 7→ e−λ|L±|(A⊗ 1) |√ρ±〉 .

A straight forward computation yields

N±Λ (A) =
∑
i,j

e−λ|E
±
i −E

±
j |(Ai,j ⊗ 1)

e−βE
±
j /2√∑

k e−βE
±
k

Ψ±j ⊗Ψ±j

=
1√∑
k e−βE

±
k

∑
i,j

e−λ|E
±
i −E

±
j |−βE

±
j /2(A±i,jΨ

±
j ⊗Ψ±j ) ,

where A±i,j := |Ψ±i 〉〈Ψ±i |A|Ψ±j 〉〈Ψ±j | is a rank 1 operator. The sum∑
i,j is convergent for λ > 0; thus, N±Λ is a nuclear map. In fact,

N±Λ is nuclear for all λ > 0 and, consequently, it is an element of all
Schatten–von Neumann classes.

Remark VIII.2. The imaginary anti-time-ordered two point function

Dc
±,β,Λ(x− x′) = 〈Aϕ±I (x)ϕ±I (x′)〉±,β,Λ (VIII.4)
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in the Gibbs state 〈 · 〉±,β,Λ defined by density matrix (VIII.2) agrees
with the covariances Dc

±,β,Λ given in (VIII.1). The proof of this state-
ment relies on two basic facts. Firstly, the pull-through identity holds:

a(f)e−tH± = e−tH±a(e−tµ±f) .

Secondly, cyclicity of the trace, translation invariance of H±, and the
fact that H± commutes with the number operator N , ensures a sym-
metry of the expectation of creation and annihilation operators. Let
a(k)# denote either a(k) or a(k)∗. Then

〈a#
±(k, t)a#′

± (k′, t′)〉β,±,Λ = 0 ,

unless k = k′, as well as one a(k)# being a creation operator, while the
other a(k)#′ is an annihilation operator. Using these two facts, and
the expansion for the time-zero field, we can evaluate the two-point
function in closed form. We omit further details.

IX. Some Comments on Partial Wick Rotation

In this paper we use complex classical fields to construct (interacting)
quantum fields in finite and infinite volumes both at zero and positive
temperatures. These fields describe neutral particles in both vacuum
and thermal equilibrium states. We now indicate how the quantum
fields we have constructed in this work are related to the quantum
fields considered in more traditional approaches.

IX.1. Flat Space and Spatially Compactified Space. Let us con-
sider scalar Wightman quantum fields ϕ(t, ~x) defined on d-dimensional,
Minkowski spacetime, acting on the Hilbert space H. Let Ω0 ∈ H de-
note the vacuum vector, and let H and ~P denote the Hamiltonian and
momentum operator, respectively. The fields are Poincaré covariant
and Ω0 is Poincaré invariant. Hence, the Wightman functions are also
Poincaré-invariant functions on spacetime. With (Λ, a) in the Poincaré
group, the Wightman function satisfies

W(n)(x1, . . . , xn) = 〈Ω0, ϕ(t1, ~x1) · · ·ϕ(tn, ~xn)Ω0〉
=W(n)(Λ−1x1 + a, . . . ,Λ−1xn + a) .

The elementary positive-energy condition for the Hamiltonian H entails

0 6 H and HΩ0 = 0 ,

which ensures that the Wightman functions (as functions of anti-time-
ordered variables tj+1 > tj to purely imaginary time itj) continue ana-
lytically to the corresponding Schwinger functions, viz.,

S(n)(t1, ~x1, . . . , tn, ~xn) =W(n)
(
(it1, ~x1), . . . , (itn, ~xn)

)
,
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which play a key role in the construction of interacting quantum field
theories. The Wightman functions satisfy the following identity9,

W(n)
(
(t1 cosh β, ~x1 + t1 sinh β), . . . , (tn cosh β, ~xn + tn sinh β)

)
= 〈ϕ(0, ~x1)Ω0, e

−i(t1−t2) coshβH~vϕ(0, ~x2) · · · e−i(tn−1−tn) coshβH~vϕ(0, ~xn)Ω0〉
and can be analytically continued (in the relative variables) to imagi-
nary times. For si > si+1, where i = 1, . . . , n − 1, define the modified
Schwinger functions,

S(n)
~v

(
t1 cosh β, ~x1 + t1 sinh β, . . . , tn cosh β, ~xn + tn sinh β

)
.
= 〈ϕ(0, ~x1)Ω0, e

−(t1−t2) coshβH~vϕ(0, ~x2) · · · e−(tn−1−tn) coshβH~vϕ(0, ~xn)Ω0〉.
Using the Flat Tube Theorem, the possibility to vary ~v ensures that
the Wightman functions (in difference coordinates xj − xj+1) extend
by analytic continuation to the forward tube

T n−1 = R
(n−1)d − i(V+)n−1 , V+ = {(t, ~x) ∈ Rd | |~x| < |t|} .

The novelty of our approach is that the modified Schwinger functions
appear as the expectation values of complex classical fields.

IX.2. Compactified Time. For the quantum theory reconstructed
from a classical theory with periodic time, namely, X = S1 × R

d−1

or X = S1 × T
d−1, the spectrum condition no longer holds. In fact,

the Osterwalder-Schrader reconstruction provides thermal equilibrium
states, and the spectrum of both the generators of the time-evolution
and of the spatial translations is symmetric around zero. Therefore,
one might wonder whether quantization by reflection positivity yields a
quantum field whose equations of motion are invariant under Poincaré
transformations. In order to answer this question, it is instructive
to compare our result with the free thermal neutral scalar Wightman
field, whose expectation values are specified by the averaged two-point
function,

W(2)
β

(
(t, α), (t′α′)

)
= 〈α, coth(βµ)e−i(t−t

′)µα′〉H− 1
2

, α, α′ ∈ H− 1
2
(Rd) ,

where β denotes the inverse temperature. Although this two-point
function is not invariant under boosts, there is no problem to consider

9Assuming that the ~v = (v, 0, 0) lies in the x1-direction, the Lorentz transforma-
tion representing this boost (in 1 + 3-spacetime dimensions) is given by the matrix

Λ =


coshβ − sinhβ 0 0
− sinhβ coshβ 0 0

0 0 1 0
0 0 0 1

 , coshβ =
1√

1− v2
, sinhβ =

v√
1− v2

.
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the expectation values of Lorentz boosted quantum fields (suppressing
the rescaling factor 1/

√
1− ~v 2). Since µ > µ+/(1+ |~v |), the expression

W(2)
β

(
(t, ~x− t~v) , (t′, ~x′ − t′~v)

)
=

(
1

2µ
coth(βµ)e−i(t−t

′)µ+

)
(~x, ~x′)

allows an analytic continuation to imaginary times into the strip{
(t− t′) ∈ C | − β

1+|~v | < =(t− t′) < 0
}
.

Thus, the Flat Tube Theorem ensures that W(2)
β (t, ~x) is analyticity in

the tube

Tβ = R
d − i

(
V + ∩ (βe1 − V +)

)
, (IX.1)

where e1 = (1, 0, . . . , 0) is the unit vector in the time-direction distin-
guished by the rest-frame.

For interacting quantum field theories, this question was addressed
by Bros and Buchholz, who formulated a relativistic KMS condition
[2, 3]. The relativistic KMS condition ensures analyticity of the two
point-function in the domain (IX.1). They verified that the relativistic
KMS condition holds for a large class of quantum field theories sat-
isfying the nuclearity condition of Buchholz and Wichmann [5]. Nu-
clearity, however, has not been established for the models considered
in Constructive Quantum Field Theory. Only recently the relativistic
KMS condition has been proved for the P(ϕ)2-models using multiple
reflection positivity [22].

For real ~v , the function appearing in the corollary at the end of §VII
can be expressed in terms of the two-point function,(

coth(βµ+)
2µ

e
−i (t−t′)

1−v2 µ+

)
(~x, ~x′)

=W(2)√
1−v2β

((
t+~v ·~x√
1−v2 ,

~x√
1−v2

)
,
(
t′+~v ·~x′√

1−v2 ,
~x′√

1−v2

))
,

which is analytic in the domain

|=(~x− ~x′)| − β(1− v 2) < =
(
(t− t′) + ~v · ~x

)
< −|=(~x− ~x′)| ,

and the boundary values satisfy the KMS condition for =(~x− ~x′) = 0.
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